
PowerShell Get-Help on command 'Set-PSBreakpoint'

PS C:\Users\wahid> Get-Help Set-PSBreakpoint

NAME

    Set-PSBreakpoint

    

SYNOPSIS

    Sets a breakpoint on a line, command, or variable.

    

    

SYNTAX

    Set-PSBreakpoint [[-Script] <System.String[]>] [-Line] <System.Int32[]> 

    [[-Column] <System.Int32>] [-Action 

    <System.Management.Automation.ScriptBlock>] [<CommonParameters>]

    

    Set-PSBreakpoint [[-Script] <System.String[]>] [-Action 

    <System.Management.Automation.ScriptBlock>] -Command <System.String[]> 

    [<CommonParameters>]

    

    Set-PSBreakpoint [[-Script] <System.String[]>] [-Action 

    <System.Management.Automation.ScriptBlock>] [-Mode {Read | Write | ReadWrite}] 

    -Variable <System.String[]> [<CommonParameters>]

    

    
Page 1/9



DESCRIPTION

    The `Set-PSBreakpoint` cmdlet sets a breakpoint in a script or in any command 

    run in the current session. You can use `Set-PSBreakpoint` to set a breakpoint 

    before executing a script or running a command, or during debugging, when 

    stopped at another breakpoint.

    

    `Set-PSBreakpoint` cannot set a breakpoint on a remote computer. To debug a 

    script on a remote computer, copy the script to the local computer and then 

    debug it locally.

    

    Each `Set-PSBreakpoint` command creates one of the following three types of 

    breakpoints:

    

    - Line breakpoint - Sets breakpoints at particular line and column coordinates.

    

    - Command breakpoint - Sets breakpoints on commands and functions.

    

    - Variable breakpoint - Sets breakpoints on variables.

    

    

    You can set a breakpoint on multiple lines, commands, or variables in a single 

    `Set-PSBreakpoint` command, but each `Set-PSBreakpoint` command sets only one 

    type of breakpoint.

    

    At a breakpoint, PowerShell temporarily stops executing and gives control to 

    the debugger. The command prompt changes to `DBG>`, and a set of debugger 

    commands become available for use. However, you can use the Action parameter 

    to specify an alternate response, such as conditions for the breakpoint or 

    instructions to perform additional tasks such as logging or diagnostics.

    The `Set-PSBreakpoint` cmdlet is one of several cmdlets designed for debugging 

    PowerShell scripts. For more information about the PowerShell debugger, see 

    about_Debuggers (../Microsoft.PowerShell.Core/About/about_Debuggers.md).

    Page 2/9



    

PARAMETERS

    -Action <System.Management.Automation.ScriptBlock>

        Specifies commands that run at each breakpoint instead of breaking. Enter 

        a script block that contains the commands. You can use this parameter to 

        set conditional breakpoints or to perform other tasks, such as testing or 

        logging.

        

        If this parameter is omitted, or no action is specified, execution stops 

        at the breakpoint, and the debugger starts.

        

        When the Action parameter is used, the Action script block runs at each 

        breakpoint. Execution does not stop unless the script block includes the 

        Break keyword. If you use the Continue keyword in the script block, 

        execution resumes until the next breakpoint.

        

        For more information, see about_Script_Blocks 

        (../Microsoft.PowerShell.Core/About/about_Script_Blocks.md), about_Break 

        (../Microsoft.PowerShell.Core/About/about_Break.md), and about_Continue 

        (../Microsoft.PowerShell.Core/About/about_Continue.md).

        

    -Column <System.Int32>

        Specifies the column number of the column in the script file on which 

        execution stops. Enter only one column number. The default is column 1.

        

        The Column value is used with the value of the Line parameter to specify 

        the breakpoint. If the Line parameter specifies multiple lines, the Column 

        parameter sets a breakpoint at the specified column on each of the 

        specified lines. PowerShell stops executing before the statement or 

        expression that includes the character at the specified line and column 

        position.

        Page 3/9



        Columns are counted from the top left margin beginning with column number 

        1 (not 0). If you specify a column that does not exist in the script, an 

        error is not declared, but the breakpoint is never executed.

        

    -Command <System.String[]>

        Sets a command breakpoint. Enter cmdlet names, such as `Get-Process`, or 

        function names. Wildcards are permitted.

        

        Execution stops just before each instance of each command is executed. If 

        the command is a function, execution stops each time the function is 

        called and at each BEGIN, PROCESS, and END section.

        

    -Line <System.Int32[]>

        Sets a line breakpoint in a script. Enter one or more line numbers, 

        separated by commas. PowerShell stops immediately before executing the 

        statement that begins on each of the specified lines.

        

        Lines are counted from the top left margin of the script file beginning 

        with line number 1 (not 0). If you specify a blank line, execution stops 

        before the next non-blank line. If the line is out of range, the 

        breakpoint is never hit.

        

    -Mode <System.Management.Automation.VariableAccessMode>

        Specifies the mode of access that triggers variable breakpoints. The 

        default is Write .

        

        This parameter is valid only when the Variable parameter is used in the 

        command. The mode applies to all breakpoints set in the command. The 

        acceptable values for this parameter are:

        

        - Write - Stops execution immediately before a new value is written to the 

        variable. - Read - Stops execution when the variable is read, that is, 

        when its value is accessed, either   to be assigned, displayed, or used. Page 4/9



        In read mode, execution does not stop when the value of the   variable 

        changes. - ReadWrite - Stops execution when the variable is read or 

        written.

        

    -Script <System.String[]>

        Specifies an array of script files that this cmdlet sets a breakpoint in. 

        Enter the paths and file names of one or more script files. If the files 

        are in the current directory, you can omit the path. Wildcards are 

        permitted.

        

        By default, variable breakpoints and command breakpoints are set on any 

        command that runs in the current session. This parameter is required only 

        when setting a line breakpoint.

        

    -Variable <System.String[]>

        Specifies an array of variables that this cmdlet sets breakpoints on. 

        Enter a comma-separated list of variables without dollar signs (`$`).

        

        Use the Mode parameter to determine the mode of access that triggers the 

        breakpoints. The default mode, Write, stops execution just before a new 

        value is written to the variable.

        

    <CommonParameters>

        This cmdlet supports the common parameters: Verbose, Debug,

        ErrorAction, ErrorVariable, WarningAction, WarningVariable,

        OutBuffer, PipelineVariable, and OutVariable. For more information, see 

        about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216). 

    

    ------------ Example 1: Set a breakpoint on a line ------------

    

    Set-PSBreakpoint -Script "sample.ps1" -Line 5

    

    Column     : 0 Page 5/9



    Line       : 5

    Action     :

    Enabled    : True

    HitCount   : 0

    Id         : 0

    Script     : C:\ps-test\sample.ps1

    ScriptName : C:\ps-test\sample.ps1

    

    When you set a new breakpoint by line number, the `Set-PSBreakpoint` cmdlet 

    generates a line breakpoint object ( 

    System.Management.Automation.LineBreakpoint ) that includes the breakpoint ID 

    and hit count.

    ---------- Example 2: Set a breakpoint on a function ----------

    

    Set-PSBreakpoint -Command "Increment" -Script "sample.ps1"

    

    Command    : Increment

    Action     :

    Enabled    : True

    HitCount   : 0

    Id         : 1

    Script     : C:\ps-test\sample.ps1

    ScriptName : C:\ps-test\sample.ps1

    

    The result is a command breakpoint object. Before the script runs, the value 

    of the HitCount property is 0.

    ---------- Example 3: Set a breakpoint on a variable ----------

    

    Set-PSBreakpoint -Script "sample.ps1" -Variable "Server" -Mode ReadWrite

    

    

    Example 4: Set a breakpoint on every command that begins with specified text

    Page 6/9



    Set-PSBreakpoint -Script Sample.ps1 -Command "write*"

    

    

    Example 5: Set a breakpoint depending on the value of a variable

    

    Set-PSBreakpoint -Script "test.ps1" -Command "DiskTest" -Action { if ($Disk 

    -gt 2) { break } }

    

    The value of the Action is a script block that tests the value of the `$Disk` 

    variable in the function.

    

    The action uses the `break` keyword to stop execution if the condition is met. 

    The alternative (and the default) is Continue .

    ---------- Example 6: Set a breakpoint on a function ----------

    

    PS> Set-PSBreakpoint -Command "checklog"

    Id       : 0

    Command  : checklog

    Enabled  : True

    HitCount : 0

    Action   :

    

    function CheckLog {

    >> get-eventlog -log Application |

    >> where {($_.source -like "TestApp") -and ($_.Message -like "*failed*")}

    >>}

    >>

    PS> Checklog

    DEBUG: Hit breakpoint(s)

    DEBUG:  Function breakpoint on 'prompt:Checklog'

    

    

    --------- Example 7: Set breakpoints on multiple lines --------- Page 7/9



    

    PS C:\> Set-PSBreakpoint -Script "sample.ps1" -Line 1, 14, 19 -Column 2 

    -Action {&(log.ps1)}

    

    Column     : 2

    Line       : 1

    Action     :

    Enabled    : True

    HitCount   : 0

    Id         : 6

    Script     : C:\ps-test\sample.ps1

    ScriptName : C:\ps-test\sample.ps1

    

    

    Column     : 2

    Line       : 14

    Action     :

    Enabled    : True

    HitCount   : 0

    Id         : 7

    Script     : C:\ps-test\sample.ps1

    ScriptName : C:\ps-test\sample.ps1

    

    

    Column     : 2

    Line       : 19

    Action     :

    Enabled    : True

    HitCount   : 0

    Id         : 8

    Script     : C:\ps-test\sample.ps1

    ScriptName : C:\ps-test\sample.ps1

    Page 8/9



    

REMARKS

    To see the examples, type: "get-help Set-PSBreakpoint -examples".

    For more information, type: "get-help Set-PSBreakpoint -detailed".

    For technical information, type: "get-help Set-PSBreakpoint -full".

    For online help, type: "get-help Set-PSBreakpoint -online"

Page 9/9


