
PowerShell Get-Help on command 'Save-Help'

PS C:\Users\wahid> Get-Help Save-Help

NAME

 Save-Help

SYNOPSIS

 Downloads and saves the newest help files to a file system directory.

SYNTAX

 Save-Help [-DestinationPath] <System.String[]> [[-Module]

 <System.Management.Automation.PSModuleInfo[]>] [[-UICulture]

 <System.Globalization.CultureInfo[]>] [-Credential

 <System.Management.Automation.PSCredential>] [-Force] [-FullyQualifiedModule

 <Microsoft.PowerShell.Commands.ModuleSpecification[]>]

 [-UseDefaultCredentials] [<CommonParameters>]

 Save-Help [[-Module] <System.Management.Automation.PSModuleInfo[]>]

 [[-UICulture] <System.Globalization.CultureInfo[]>] [-Credential

 <System.Management.Automation.PSCredential>] [-Force] [-FullyQualifiedModule

 <Microsoft.PowerShell.Commands.ModuleSpecification[]>] -LiteralPath

 <System.String[]> [-UseDefaultCredentials] [<CommonParameters>]

Page 1/11

DESCRIPTION

 The `Save-Help` cmdlet downloads the newest help files for PowerShell modules

 and saves them to a directory that you specify. This feature lets you update

 the help files on computers that do not have access to the Internet, and makes

 it easier to update the help files on multiple computers.

 In Windows PowerShell 3.0, `Save-Help` worked only for modules that are

 installed on the local computer. Although it was possible to import a module

 from a remote computer, or obtain a reference to a PSModuleInfo object from a

 remote computer by using PowerShell remoting, the HelpInfoUri property was not

 preserved, and `Save-Help` would not work for remote module Help.

 In Windows PowerShell 4.0, the HelpInfoUri property is preserved over

 PowerShell remoting, which enables `Save-Help` to work for modules that are

 installed on remote computers. It is also possible to save a PSModuleInfo

 object to disk or removable media by running `Export-Clixml` on a computer

 that does not have Internet access, import the object on a computer that does

 have Internet access, and then run `Save-Help` on the PSModuleInfo object. The

 saved help can be transported to the remote computer by using removable

 storage media, such as a USB drive. The help can be installed on the remote

 computer by running `Update-Help`. This process can be used to install help on

 computers that do not have any kind of network access.

 To install saved help files, run the `Update-Help` cmdlet. Add its SourcePath

 parameter to specify the folder in which you saved the Help files.

 Without parameters, a `Save-Help` command downloads the newest help for all

 modules in the session and for modules that are installed on the computer in a

 location listed in the PSModulePath environment variable. This action skips

 modules that do not support Updatable Help without warning.

 The `Save-Help` cmdlet checks the version of any help files in the destination Page 2/11

 folder. If newer help files are available, this cmdlet downloads the newest

 help files from the Internet, and then saves them in the folder. The

 `Save-Help` cmdlet works just like the `Update-Help` cmdlet, except that it

 saves the downloaded cabinet (.cab) files, instead of extracting the help

 files from the cabinet files and installing them on the computer.

 The saved help for each module consists of one help information (HelpInfo XML)

 file and one cabinet (.cab) file for the help files each UI culture. You do

 not have to extract the help files from the cabinet file. The `Update-Help`

 cmdlet extracts the help files, validates the XML for safety, and then

 installs the help files and the help information file in a language-specific

 subfolder of the module folder.

 To save the help files for modules in the PowerShell installation folder

 (`$pshome\Modules`), start PowerShell by using the Run as administrator

 option. You must be a member of the Administrators group on the computer to

 download the help files for these modules.

 This cmdlet was introduced in Windows PowerShell 3.0.

PARAMETERS

 -Credential <System.Management.Automation.PSCredential>

 Specifies a user credential. This cmdlet runs the command by using

 credentials of a user who has permission to access the file system

 location specified by the DestinationPath parameter. This parameter is

 valid only when the DestinationPath or LiteralPath parameter is used in

 the command.

 This parameter enables you to run `Save-Help` commands that use the

 DestinationPath parameter on remote computers. By providing explicit

 credentials, you can run the command on a remote computer and access a

 file share on a third computer without encountering an access denied error Page 3/11

 or using CredSSP authentication to delegate credentials.

 Type a user name, such as User01 or Domain01\User01 , or enter a

 PSCredential object generated by the `Get-Credential` cmdlet. If you type

 a user name, you're prompted to enter the password.

 Credentials are stored in a PSCredential

 (/dotnet/api/system.management.automation.pscredential)object and the

 password is stored as a SecureString

 (/dotnet/api/system.security.securestring).

 > [!NOTE] > For more information about SecureString data protection, see >

 How secure is SecureString?

 (/dotnet/api/system.security.securestring#how-secure-is-securestring).

 -DestinationPath <System.String[]>

 Specifies the path of the folder in which the help files are saved. Do not

 specify a file name or file name extension.

 -Force <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet does not follow the once-per-day limitation,

 skips version checking, and downloads files that exceed the 1 GB limit.

 Without this parameter, only one `Save-Help` command for each module is

 permitted in each 24-hour period, downloads are limited to 1 GB of

 uncompressed content per module, and help files for a module are installed

 only when they are newer than the files on the computer.

 The once-per-day limit protects the servers that host the help files, and

 makes it practical for you to add a `Save-Help` command to your PowerShell

 profile.

 To save help for a module in multiple UI cultures without the Force Page 4/11

 parameter, include all UI cultures in the same command, such as:

 `Save-Help -Module PSScheduledJobs -UICulture en-US, fr-FR, pt-BR`

 -FullyQualifiedModule <Microsoft.PowerShell.Commands.ModuleSpecification[]>

 The value can be a module name, a full module specification, or a path to

 a module file.

 When the value is a path, the path can be fully qualified or relative. A

 relative path is resolved relative to the script that contains the using

 statement.

 When the value is a name or module specification, PowerShell searches the

 PSModulePath for the specified module.

 A module specification is a hashtable that has the following keys.

 - `ModuleName` - Required Specifies the module name. - `GUID` - Optional

 Specifies the GUID of the module. - It's also Required to specify at least

 one of the three below keys. - `ModuleVersion` - Specifies a minimum

 acceptable version of the module. - `MaximumVersion` - Specifies the

 maximum acceptable version of the module. - `RequiredVersion` -

 Specifies an exact, required version of the module. This can't be used

 with the other Version keys.

 You can't specify the FullyQualifiedModule parameter in the same command

 as a Module parameter. the two parameters are mutually exclusive.

 -LiteralPath <System.String[]>

 Specifies a path of the destination folder. Unlike the value of the

 DestinationPath parameter, the value of the LiteralPath parameter is used

 exactly as it is typed. No characters are interpreted as wildcard

 characters. If the path includes escape characters, enclose it in single

 quotation marks. Single quotation marks tell PowerShell not to interpret Page 5/11

 any characters as escape sequences.

 -Module <System.Management.Automation.PSModuleInfo[]>

 Specifies modules for which this cmdlet downloads help. Enter one or more

 module names or name patters in a comma-separated list or in a file that

 has one module name on each line. Wildcard characters are permitted. You

 can also pipe module objects from the `Get-Module` cmdlet to `Save-Help`.

 By default, `Save-Help` downloads help for all modules that support

 Updatable Help and are installed on the local computer in a location

 listed in the PSModulePath environment variable.

 To save help for modules that are not installed on the computer, run a

 `Get-Module` command on a remote computer. Then pipe the resulting module

 objects to the `Save-Help` cmdlet or submit the module objects as the

 value of the Module or InputObject parameters.

 If the module that you specify is installed on the computer, you can enter

 the module name or a module object. If the module is not installed on the

 computer, you must enter a module object, such as one returned by the

 `Get-Module` cmdlet.

 The Module parameter of the `Save-Help` cmdlet does not accept the full

 path of a module file or module manifest file. To save help for a module

 that is not in a PSModulePath location, import the module into the current

 session before you run the `Save-Help` command.

 A value of "*" (all) attempts to update help for all modules that are

 installed on the computer. This includes modules that do not support

 Updatable Help. This value might generate errors when the command

 encounters modules that do not support Updatable Help.

 -UICulture <System.Globalization.CultureInfo[]> Page 6/11

 Specifies UI culture values for which this cmdlet gets updated help files.

 Enter one or more language codes, such as `es-ES`, a variable that

 contains culture objects, or a command that gets culture objects, such as

 a `Get-Culture` or `Get-UICulture` command.

 Wildcard characters are not permitted. Do not specify a partial language

 code, such as "de".

 By default, `Save-Help` gets help files in the UI culture set for Windows

 or its fallback culture. If you specify the UICulture parameter,

 `Save-Help` looks for help only for the specified UI culture, not in any

 fallback culture.

 -UseDefaultCredentials <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet runs the command, including the web download,

 with the credentials of the current user. By default, the command runs

 without explicit credentials.

 This parameter is effective only when the web download uses NTLM,

 negotiate, or Kerberos-based authentication.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ------ Example 1: Save the help for the DhcpServer module ------

 # Option 1: Run Invoke-Command to get the PSModuleInfo object for the remote

 DHCP Server module,

 # save the PSModuleInfo object in the variable $m, and then run Save-Help.

 Page 7/11

 $m = Invoke-Command -ComputerName RemoteServer -ScriptBlock { Get-Module -Name

 DhcpServer -ListAvailable }

 Save-Help -Module $m -DestinationPath "C:\SavedHelp"

 # Option 2: Open a PSSession--targeted at the remote computer that is running

 the DhcpServer

 # module--to get the PSModuleInfo object for the remote module, and then run

 Save-Help.

 $s = New-PSSession -ComputerName "RemoteServer"

 $m = Get-Module -PSSession $s -Name "DhcpServer" -ListAvailable

 Save-Help -Module $m -DestinationPath "C:\SavedHelp"

 # Option 3: Open a CIM session--targeted at the remote computer that is

 running the DhcpServer

 # module--to get the PSModuleInfo object for the remote module, and then run

 Save-Help.

 $c = New-CimSession -ComputerName "RemoteServer"

 $m = Get-Module -CimSession $c -Name "DhcpServer" -ListAvailable

 Save-Help -Module $m -DestinationPath "C:\SavedHelp"

 This example shows three different ways to use `Save-Help` to save the help

 for the DhcpServer module from an Internet-connected client computer, without

 installing the DhcpServer module or the DHCP Server role on the local computer.

 ------ Example 2: Install help for the DhcpServer module ------

 # First, run Export-CliXml to export the PSModuleInfo object to a shared

 folder or to removable media.

 $m = Get-Module -Name "DhcpServer" -ListAvailable Page 8/11

 Export-CliXml -Path "E:\UsbFlashDrive\DhcpModule.xml" -InputObject $m

 # Next, transport the removable media to a computer that has Internet access,

 and then import the

 # PSModuleInfo object with Import-CliXml. Run Save-Help to save the Help for

 the imported DhcpServer

 # module PSModuleInfo object.

 $deserialized_m = Import-CliXml "E:\UsbFlashDrive\DhcpModule.xml"

 Save-Help -Module $deserialized_m -DestinationPath "E:\UsbFlashDrive\SavedHelp"

 # Finally, transport the removable media back to the computer that does not

 have network access, and

 # then install the help by running Update-Help.

 Update-Help -Module DhcpServer -SourcePath "E:\UsbFlashDrive\SavedHelp"

 This example shows how to install help that you saved in Example 1 for the

 DhcpServer module on a computer that does not have Internet access.

 ------------- Example 3: Save help for all modules -------------

 Save-Help -DestinationPath "\\Server01\FileShare01"

 This command downloads the newest help files for all modules in the UI culture

 set for Windows on the local computer. It saves the help files in the

 `\Server01\Fileshare01` folder.

 ------ Example 4: Save help for a module on the computer ------

 Save-Help -Module ServerManager -DestinationPath "\\Server01\FileShare01"

 -Credential Domain01/Admin01

 This command downloads the newest help files for the ServerManager module, and

 then saves them in the `\Server01\Fileshare01` folder. Page 9/11

 When a module is installed on the computer, you can type the module name as

 the value of the Module parameter, even if the module is not imported into the

 current session.

 The command uses the Credential parameter to supply the credentials of a user

 who has permission to write to the file share.

 -- Example 5: Save help for a module on a different computer --

 Invoke-Command -ComputerName Server02 {Get-Module -Name CustomSQL

 -ListAvailable} | Save-Help -DestinationPath \\Server01\FileShare01

 -Credential Domain01\Admin01

 These commands download the newest help files for the CustomSQL module and

 save them in the `\Server01\Fileshare01` folder.

 Because the CustomSQL module is not installed on the computer, the sequence

 includes an `Invoke-Command` command that gets the module object for the

 CustomSQL module from the Server02 computer and then pipes the module object

 to the `Save-Help` cmdlet.

 When a module is not installed on the computer, `Save-Help` needs the module

 object, which includes information about the location of the newest help files.

 --- Example 6: Save help for a module in multiple languages ---

 Save-Help -Module Microsoft.PowerShell* -UICulture de-DE, en-US, fr-FR, ja-JP

 -DestinationPath "D:\Help"

 This command saves help for the core PowerShell modules in four different UI

 cultures. The language packs for these locales do not have to be installed on

 the computer.

 `Save-Help` can download help files for modules in different UI cultures only Page 10/11

 when the module owner makes the translated files available on the Internet.

 ------- Example 7: Save help more than one time each day -------

 Save-Help -Force -DestinationPath "\\Server3\AdminShare\Help"

 This command saves help for all modules that are installed on the computer.

 The command specifies the Force parameter to override the rule that prevents

 the `Save-Help` cmdlet from downloading help more than once in each 24-hour

 period.

 The Force parameter also overrides the 1 GB restriction and circumvents

 version checking. Therefore, you can download files even if the version is not

 later than the version in the destination folder.

 The command uses the `Save-Help` cmdlet to download and save the help files to

 the specified folder. The Force parameter is required when you have to run a

 `Save-Help` command more than one time each day.

REMARKS

 To see the examples, type: "get-help Save-Help -examples".

 For more information, type: "get-help Save-Help -detailed".

 For technical information, type: "get-help Save-Help -full".

 For online help, type: "get-help Save-Help -online"

Page 11/11

