
PowerShell Get-Help on command 'Remove-Job'

PS C:\Users\wahid> Get-Help Remove-Job

NAME

 Remove-Job

SYNOPSIS

 Deletes a PowerShell background job.

SYNTAX

 Remove-Job [-Command <System.String[]>] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Remove-Job [-Filter] <System.Collections.Hashtable> [-Force] [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Remove-Job [-Id] <System.Int32[]> [-Force] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Remove-Job [-Job] <System.Management.Automation.Job[]> [-Force] [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Remove-Job [-Name] <System.String[]> [-Force] [-Confirm] [-WhatIf]
Page 1/8

 [<CommonParameters>]

 Remove-Job [-InstanceId] <System.Guid[]> [-Force] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Remove-Job [-State] {AtBreakpoint | Blocked | Completed | Disconnected |

 Failed | NotStarted | Running | Stopped | Stopping | Suspended | Suspending}

 [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Remove-Job` cmdlet deletes PowerShell background jobs that were started

 by the `Start-Job` cmdlet or by cmdlets such as `Invoke-Command` that support

 the AsJob parameter.

 You can use `Remove-Job` to delete all jobs or delete selected jobs. The jobs

 are identified by their Name , ID , Instance ID , Command , or State . Or, a

 job object can be sent down the pipeline to `Remove-Job`. Without parameters

 or parameter values, `Remove-Job` has no effect.

 Since PowerShell 3.0, `Remove-Job` can delete custom job types, such as

 scheduled jobs and workflow jobs. For example, `Remove-Job` deletes the

 scheduled job, all instances of the scheduled job on disk, and the results of

 all triggered job instances.

 If you try to delete a running job, `Remove-Job` fails. Use the `Stop-Job`

 cmdlet to stop a running job. Or, use `Remove-Job` with the Force parameter to

 delete a running job.

 Jobs remain in the global job cache until you delete the background job or

 close the PowerShell session.

Page 2/8

PARAMETERS

 -Command <System.String[]>

 Deletes jobs that include the specified words in the command. You can

 enter a comma-separated array.

 -Filter <System.Collections.Hashtable>

 Deletes jobs that satisfy all the conditions established in the associated

 hash table. Enter a hash table where the keys are job properties and the

 values are job property values.

 This parameter works only on custom job types, such as workflow jobs and

 scheduled jobs. It doesn't work on standard background jobs, such as those

 created by using the `Start-Job`.

 This parameter is introduced in PowerShell 3.0.

 -Force <System.Management.Automation.SwitchParameter>

 Deletes a job even if the job's state is Running . If the Force parameter

 isn't specified, `Remove-Job` doesn't delete running jobs.

 -Id <System.Int32[]>

 Deletes background jobs with the specified Id . You can enter a

 comma-separated array. The job's Id is a unique integer that identifies a

 job within the current session.

 To find a job's Id , use `Get-Job` without parameters.

 -InstanceId <System.Guid[]>

 Deletes jobs with the specified InstanceId . You can enter a

 comma-separated array. An InstanceId is a unique GUID that identifies a

 job.

 To find a job's InstanceId , use `Get-Job`. Page 3/8

 -Job <System.Management.Automation.Job[]>

 Specifies the jobs to be deleted. Enter a variable that contains the jobs

 or a command that gets the jobs. You can enter a comma-separated array.

 You can send job objects down the pipeline to `Remove-Job`.

 -Name <System.String[]>

 Only deletes jobs with the specified friendly name. Wildcards are

 permitted. You can enter a comma-separated array.

 Friendly names for jobs aren't guaranteed to be unique, even within a

 PowerShell session. Use the WhatIf and Confirm parameters when you delete

 files by name.

 -State <System.Management.Automation.JobState>

 Only deletes jobs with the specified state. To delete jobs with a state of

 Running , use the Force parameter.

 Accepted values:

 - AtBreakpoint

 - Blocked

 - Completed

 - Disconnected

 - Failed

 - NotStarted

 Page 4/8

 - Running

 - Stopped

 - Stopping

 - Suspended

 - Suspending

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before `Remove-Job` is run.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if `Remove-Job` runs. The cmdlet isn't run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ---------- Example 1: Delete a job by using its name ----------

 $batch = Get-Job -Name BatchJob

 $batch | Remove-Job

 `Get-Job` uses the Name parameter to specify the job, BatchJob . The job

 object is stored in the `$batch` variable. The object in `$batch` is sent down

 the pipeline to `Remove-Job`.

 An alternative is to use the Job parameter, such as `Remove-Job -Job $batch`.

 ----------- Example 2: Delete all jobs in a session ----------- Page 5/8

 Get-job | Remove-Job

 `Get-Job` gets all the jobs in the current PowerShell session. The job objects

 are sent down the pipeline to `Remove-Job`.

 -------------- Example 3: Delete NotStarted jobs --------------

 Remove-Job -State NotStarted

 `Remove-Job` uses the State parameter to specify the job status.

 ------- Example 4: Delete jobs by using a friendly name -------

 Remove-Job -Name *batch -Force

 `Remove-Job` uses the Name parameter to specify a job name pattern. The

 pattern includes the asterisk (` `) wildcard to find all job names that end

 with batch . The Force * parameter deletes jobs that running.

 -- Example 5: Delete a job that was created by Invoke-Command --

 $job = Invoke-Command -ComputerName Server01 -ScriptBlock {Get-Process} -AsJob

 $job | Remove-Job

 `Invoke-Command` runs a job on the Server01 computer. The AsJob parameter runs

 the ScriptBlock as a background job. The job object is stored in the `$job`

 variable. The `$job` variable object is sent down the pipeline to `Remove-Job`.

 Example 6: Delete a job that was created by Invoke-Command and Start-Job

 $S = New-PSSession -ComputerName Server01

 Invoke-Command -Session $S -ScriptBlock {Start-Job -ScriptBlock {Get-Process}

 -Name MyJob}

 Invoke-Command -Session $S -ScriptBlock {Remove-Job -Name MyJob}

 `New-PSSession` creates a PSSession , a persistent connection, to the Server01 Page 6/8

 computer. The connection is saved in the `$S` variable.

 `Invoke-Command` connects to the session saved in `$S`. The ScriptBlock uses

 `Start-Job` to start a remote job. The job runs a `Get-Process` command and

 uses the Name parameter to specify a friendly job name, MyJob .

 `Invoke-Command` uses the `$S` session and runs `Remove-Job`. The Name

 parameter specifies that the job named MyJob is deleted.

 ------- Example 7: Delete a job by using its InstanceId -------

 $job = Start-Job -ScriptBlock {Get-Process PowerShell}

 $job | Format-List -Property *

 Remove-Job -InstanceId ad02b942-8007-4407-87f3-d23e71955872

 State : Completed

 HasMoreData : True

 StatusMessage :

 Location : localhost

 Command : Get-Process PowerShell

 JobStateInfo : Completed

 Finished : System.Threading.ManualResetEvent

 InstanceId : ad02b942-8007-4407-87f3-d23e71955872

 Id : 3

 Name : Job3

 ChildJobs : {Job4}

 PSBeginTime : 7/26/2019 11:36:56

 PSEndTime : 7/26/2019 11:36:57

 PSJobTypeName : BackgroundJob

 Output : {}

 Error : {}

 Progress : {}

 Verbose : {}

 Debug : {} Page 7/8

 Warning : {}

 Information : {}

 `Start-Job` starts a background job and the job object is saved in the `$job`

 variable.

 The object in `$job` is sent down the pipeline to `Format-List`. The Property

 parameter uses an asterisk (`*`) to specify that all the object's properties

 are displayed in a list.

 `Remove-Job` uses the InstanceId parameter to specify the job to delete.

REMARKS

 To see the examples, type: "get-help Remove-Job -examples".

 For more information, type: "get-help Remove-Job -detailed".

 For technical information, type: "get-help Remove-Job -full".

 For online help, type: "get-help Remove-Job -online"

Page 8/8

