
PowerShell Get-Help on command 'Remove-Item'

PS C:\Users\wahid> Get-Help Remove-Item

NAME

 Remove-Item

SYNOPSIS

 Deletes the specified items.

SYNTAX

 Remove-Item [-Credential <System.Management.Automation.PSCredential>]

 [-DeleteKey] [-Exclude <System.String[]>] [-Filter <System.String>] [-Force]

 [-Include <System.String[]>] -LiteralPath <System.String[]> [-Recurse]

 [-Stream <System.String[]>] [-UseTransaction] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Remove-Item [-Path] <System.String[]> [-Credential

 <System.Management.Automation.PSCredential>] [-DeleteKey] [-Exclude

 <System.String[]>] [-Filter <System.String>] [-Force] [-Include

 <System.String[]>] [-Recurse] [-Stream <System.String[]>] [-UseTransaction]

 [-Confirm] [-WhatIf] [<CommonParameters>]

Page 1/8

DESCRIPTION

 The `Remove-Item` cmdlet deletes one or more items. Because it's supported by

 many providers, it can delete many different types of items, including files,

 folders, registry keys, variables, aliases, and functions.

PARAMETERS

 -Credential <System.Management.Automation.PSCredential>

 > [!NOTE] > This parameter isn't supported by any providers installed with

 PowerShell. > To impersonate another user, or elevate your credentials

 when running this cmdlet, > use Invoke-Command

 (../Microsoft.PowerShell.Core/Invoke-Command.md).

 -DeleteKey <System.Management.Automation.SwitchParameter>

 This is a dynamic parameter made available by the Certificate provider.

 The Certificate provider and this parameter are only available on Windows

 platforms.

 When provided, the cmdlet deletes the private key when the certificate is

 deleted.

 For more information, see about_Certificate_Provider

 (../Microsoft.PowerShell.Security/About/about_Certificate_Provider.md).

 -Exclude <System.String[]>

 Specifies, as a string array, an item or items that this cmdlet excludes

 in the operation. The value of this parameter qualifies the Path

 parameter. Enter a path element or pattern, such as ` .txt`. Wildcard

 characters are permitted. The Exclude * parameter is effective only when

 the command includes the contents of an item, such as `C:\Windows*`, where

 the wildcard character specifies the contents of the `C:\Windows`

 directory.

 Page 2/8

 When using Recurse with Exclude , Exclude only filters results of the

 current directory. If there are files that match the Exclude pattern in

 subfolders, those files are removed along with its parent directory.

 -Filter <System.String>

 Specifies a filter to qualify the Path parameter. The FileSystem

 (../Microsoft.PowerShell.Core/About/about_FileSystem_Provider.md)provider

 is the only installed PowerShell provider that supports the use of

 filters. You can find the syntax for the FileSystem filter language in

 about_Wildcards (../Microsoft.PowerShell.Core/About/about_Wildcards.md).

 Filters are more efficient than other parameters, because the provider

 applies them when the cmdlet gets the objects rather than having

 PowerShell filter the objects after they're retrieved.

 -Force <System.Management.Automation.SwitchParameter>

 Forces the cmdlet to remove items that can't otherwise be changed, such as

 hidden or read-only files or read-only aliases or variables. The cmdlet

 can't remove constant aliases or variables. Implementation varies from

 provider to provider. For more information, see about_Providers

 (../Microsoft.PowerShell.Core/About/about_Providers.md). Even using the

 Force parameter, the cmdlet can't override security restrictions.

 -Include <System.String[]>

 Specifies, as a string array, an item or items that this cmdlet includes

 in the operation. The value of this parameter qualifies the Path

 parameter. Enter a path element or pattern, such as `" .txt"`. Wildcard

 characters are permitted. The Include * parameter is effective only when

 the command includes the contents of an item, such as `C:\Windows*`, where

 the wildcard character specifies the contents of the `C:\Windows`

 directory.

 -LiteralPath <System.String[]>

 Specifies a path to one or more locations. The value of LiteralPath is Page 3/8

 used exactly as it's typed. No characters are interpreted as wildcards. If

 the path includes escape characters, enclose it in single quotation marks.

 Single quotation marks tell PowerShell not to interpret any characters as

 escape sequences.

 For more information, see about_Quoting_Rules

 (../Microsoft.Powershell.Core/About/about_Quoting_Rules.md).

 -Path <System.String[]>

 Specifies a path of the items being removed. Wildcard characters are

 permitted.

 -Recurse <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet deletes the items in the specified locations

 and in all child items of the locations.

 The Recurse parameter might not delete all subfolders or all child items.

 This is a known issue.

 > [!NOTE] > This behavior was fixed in Windows versions 1909 and newer.

 -Stream <System.String[]>

 This is a dynamic parameter made available by the FileSystem provider.

 This parameter is only available on Windows. This parameter can't be used

 in combination with the Recurse parameter.

 You can use `Remove-Item` to delete an alternative data stream, such as

 `Zone.Identifier`. However, it isn't the recommended way to eliminate

 security checks that block files that are downloaded from the Internet. If

 you verify that a downloaded file is safe, use the `Unblock-File` cmdlet.

 This parameter was introduced in Windows PowerShell 3.0.

 Page 4/8

 For more information, see about_FileSystem_Provider

 (../Microsoft.PowerShell.Core/About/about_FileSystem_Provider.md).

 -UseTransaction <System.Management.Automation.SwitchParameter>

 Includes the command in the active transaction. This parameter is valid

 only when a transaction is in progress. For more information, see

 about_Transactions

 (../Microsoft.PowerShell.Core/About/about_Transactions.md)

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet. For more

 information, see the following articles:

 - about_Preference_Variables (../microsoft.powershell.core/about/about_pref

 erence_variables.md#confirmpreference)-

 about_Functions_CmdletBindingAttribute (../microsoft.powershell.core/about/

 about_functions_cmdletbindingattribute.md?#confirmimpact)

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet isn't run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ----- Example 1: Delete files that have any file extension -----

 Remove-Item C:\Test*.*

 --------- Example 2: Delete document files in a folder --------- Page 5/8

 Remove-Item * -Include *.doc -Exclude *1*

 It uses the wildcard character (`*`) to specify the contents of the current

 folder. It uses the Include and Exclude parameters to specify the files to

 delete.

 ---------- Example 3: Delete hidden, read-only files ----------

 Remove-Item -Path C:\Test\hidden-RO-file.txt -Force

 It uses the Path parameter to specify the file. It uses the Force parameter to

 delete it. Without Force , you can't delete read-only or hidden files.

 ------ Example 4: Delete files in subfolders recursively ------

 Get-ChildItem * -Include *.csv -Recurse | Remove-Item

 In the `Get-ChildItem` command, Path has a value of (`*`), which represents

 the contents of the current folder. It uses Include to specify the CSV file

 type, and it uses Recurse to make the retrieval recursive. If you try to

 specify the file type in the path, such as `-Path *.csv`, the cmdlet

 interprets the subject of the search to be a file that has no child items, and

 Recurse fails.

 > [!NOTE] > This behavior was fixed in Windows versions 1909 and up.

 ------------ Example 5: Delete subkeys recursively ------------

 Remove-Item HKLM:\Software\MyCompany\OldApp -Recurse

 ------ Example 6: Deleting files with special characters ------

 Get-ChildItem

 Page 6/8

 Directory: C:\temp\Downloads

 Mode LastWriteTime Length Name

 ---- ------------- ------ ----

 -a--- 6/1/2018 12:19 PM 1362 myFile.txt

 -a--- 6/1/2018 12:30 PM 1132 myFile[1].txt

 -a--- 6/1/2018 12:19 PM 1283 myFile[2].txt

 -a--- 6/1/2018 12:19 PM 1432 myFile[3].txt

 Get-ChildItem | Where-Object Name -Like '*`[*'

 Directory: C:\temp\Downloads

 Mode LastWriteTime Length Name

 ---- ------------- ------ ----

 -a--- 6/1/2018 12:30 PM 1132 myFile[1].txt

 -a--- 6/1/2018 12:19 PM 1283 myFile[2].txt

 -a--- 6/1/2018 12:19 PM 1432 myFile[3].txt

 Get-ChildItem | Where-Object Name -Like '*`[*' | ForEach-Object { Remove-Item

 -LiteralPath $_.Name }

 Get-ChildItem

 Directory: C:\temp\Downloads

 Mode LastWriteTime Length Name

 ---- ------------- ------ ----

 -a--- 6/1/2018 12:19 PM 1362 myFile.txt

 ---------- Example 7: Remove an alternate data stream ----------

 Get-Item C:\Test\Copy-Script.ps1 -Stream Zone.Identifier Page 7/8

 FileName: \\C:\Test\Copy-Script.ps1

 Stream Length

 ------ ------

 Zone.Identifier 26

 Remove-Item C:\Test\Copy-Script.ps1 -Stream Zone.Identifier

 Get-Item C:\Test\Copy-Script.ps1 -Stream Zone.Identifier

 Get-Item : Could not open alternate data stream 'Zone.Identifier' of file

 'C:\Test\Copy-Script.ps1'.

 At line:1 char:1

 + Get-Item 'C:\Test\Copy-Script.ps1' -Stream Zone.Identifier

 + ~~

 + CategoryInfo : ObjectNotFound: (C:\Test\Copy-Script.ps1:String)

 [Get-Item], FileNotFoundException

 + FullyQualifiedErrorId :

 AlternateDataStreamNotFound,Microsoft.PowerShell.Commands.GetItemCommand

 The Stream parameter `Get-Item` gets the `Zone.Identifier` stream of the

 `Copy-Script.ps1` file. `Remove-Item` uses the Stream parameter to remove the

 `Zone.Identifier` stream of the file. Finally, the `Get-Item` cmdlet shows

 that the `Zone.Identifier` stream was deleted.

REMARKS

 To see the examples, type: "get-help Remove-Item -examples".

 For more information, type: "get-help Remove-Item -detailed".

 For technical information, type: "get-help Remove-Item -full".

 For online help, type: "get-help Remove-Item -online"

Page 8/8

