
PowerShell Get-Help on command 'Register-WmiEvent'

PS C:\Users\wahid> Get-Help Register-WmiEvent

NAME

 Register-WmiEvent

SYNOPSIS

 Subscribes to a Windows Management Instrumentation (WMI) event.

SYNTAX

 Register-WmiEvent [-Class] <System.String> [[-SourceIdentifier]

 <System.String>] [[-Action] <System.Management.Automation.ScriptBlock>]

 [-ComputerName <System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-Forward] [-MaxTriggerCount

 <System.Int32>] [-MessageData <System.Management.Automation.PSObject>]

 [-Namespace <System.String>] [-SupportEvent] [-Timeout <System.Int64>]

 [<CommonParameters>]

 Register-WmiEvent [-Query] <System.String> [[-SourceIdentifier]

 <System.String>] [[-Action] <System.Management.Automation.ScriptBlock>]

 [-ComputerName <System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-Forward] [-MaxTriggerCount

 <System.Int32>] [-MessageData <System.Management.Automation.PSObject>]
Page 1/7

 [-Namespace <System.String>] [-SupportEvent] [-Timeout <System.Int64>]

 [<CommonParameters>]

DESCRIPTION

 The `Register-WmiEvent` cmdlet subscribes to Windows Management

 Instrumentation (WMI) events on the local computer or on a remote computer.

 When the subscribed WMI event is raised, it is added to the event queue in

 your local session even if the event occurs on a remote computer. To get

 events in the event queue, use the `Get-Event` cmdlet.

 You can use the parameters of `Register-WmiEvent` to subscribe to events on

 remote computers and to specify the property values of the events that can

 help you identify the event in the queue. You can also use the Action

 parameter to specify actions to take when a subscribed event is raised.

 When you subscribe to an event, an event subscriber is added to your session.

 To get the event subscribers in the session, use the `Get-EventSubscriber`

 cmdlet. To cancel the subscription, use the `Unregister-Event` cmdlet, which

 deletes the event subscriber from the session.

 New Common Information Model (CIM) cmdlets, introduced Windows PowerShell 3.0,

 perform the same tasks as the WMI cmdlets. The CIM cmdlets comply with

 WS-Management (WSMan) standards and with the CIM standard, which enables the

 cmdlets to use the same techniques to manage computers that run the Windows

 operating system and those that run other operating systems. Instead of using

 `Register-WmiEvent`, consider using the Register-CimIndicationEvent

 (../cimcmdlets/register-cimindicationevent.md)cmdlet.

PARAMETERS

 -Action <System.Management.Automation.ScriptBlock> Page 2/7

 Specifies commands that handle the events. The commands in the Action

 parameter run when an event is raised instead of sending the event to the

 event queue. Enclose the commands in braces (`{}`) to create a script

 block.

 The value of Action can include the `$Event`, `$EventSubscriber`,

 `$Sender`, `$EventArgs`, and `$Args` automatic variables, which provide

 information about the event to the Action script block. For more

 information, see about_Automatic_Variables

 (../Microsoft.PowerShell.Core/About/about_Automatic_Variables.md).

 When you specify an action, `Register-WmiEvent` returns an event job

 object that represents that action. You can use the cmdlets that contain

 the Job noun (the Job cmdlets) to manage the event job.

 -Class <System.String>

 Specifies the event to which you are subscribing. Enter the WMI class that

 generates the events. A Class or Query parameter is required in every

 command.

 -ComputerName <System.String>

 Specifies the name of the computer on which the command runs. The default

 is the local computer.

 Type the NetBIOS name, an IP address, or a fully qualified domain name of

 the computer. To specify the local computer, type the computer name, a dot

 (`.`), or localhost.

 This parameter does not rely on Windows PowerShell remoting. You can use

 the ComputerName parameter even if your computer is not configured to run

 remote commands.

 -Credential <System.Management.Automation.PSCredential> Page 3/7

 Specifies a user account that has permission to perform this action. The

 default is the current user.

 Type a user name, such as User01 or Domain01\User01, or enter a

 PSCredential object, such as one generated by the `Get-Credential` cmdlet.

 If you type a user name, this cmdlet prompts you for a password.

 -Forward <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet sends events for this subscription to the

 session on the local computer. Use this parameter when you are registering

 for events on a remote computer or in a remote session.

 -MaxTriggerCount <System.Int32>

 Specifies the maximum trigger count.

 -MessageData <System.Management.Automation.PSObject>

 Specifies any additional data to be associated with this event

 subscription. The value of this parameter appears in the MessageData

 property of all events associated with this subscription.

 -Namespace <System.String>

 Specifies the namespace of the WMI class.

 -Query <System.String>

 Specifies a query in WMI Query Language (WQL) that identifies the WMI

 event class, such as: `select * from __InstanceDeletionEvent`.

 -SourceIdentifier <System.String>

 Specifies a name that you select for the subscription. The name that you

 select must be unique in the current session. The default value is the

 GUID that Windows PowerShell assigns.

 The value of this parameter appears in the value of the SourceIdentifier Page 4/7

 property of the subscriber object and of all event objects associated with

 this subscription.

 -SupportEvent <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet hides the event subscription. Use this

 parameter when the current subscription is part of a more complex event

 registration mechanism and it should not be discovered independently.

 To view or cancel a subscription that was created by using the

 SupportEvent parameter, specify the Force parameter of the

 `Get-EventSubscriber` and `Unregister-Event` cmdlets.

 -Timeout <System.Int64>

 Specifies how long Windows PowerShell waits for this command to finish.

 The default value, 0 (zero), means that there is no time-out, and it

 causes Windows PowerShell to wait indefinitely.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ----- Example 1: Subscribe to events generated by a class -----

 Register-WmiEvent -Class 'Win32_ProcessStartTrace' -SourceIdentifier

 "ProcessStarted"

 ---- Example 2: Subscribe to creation events for a process ----

 $wmiParameters = @{ Page 5/7

 Query = "select * from __instancecreationevent within 5 where targetinstance

 isa 'win32_process'"

 SourceIdentifier = "WMIProcess"

 MessageData = "Test 01"

 TimeOut = 500

 }

 Register-WmiEvent @wmiParameters

 ------- Example 3: Use an action to respond to an event -------

 $action = { Get-History | where { $_.commandline -like "*start-process*" } |

 export-cliXml "commandHistory.clixml" }

 Register-WmiEvent -Class 'Win32_ProcessStartTrace' -SourceIdentifier

 "ProcessStarted" -Action $action

 Id Name State HasMoreData Location Command

 -- ---- ----- ----------- -------- -------

 1 ProcessStarted NotStarted False get-history | where

 {...

 When you use the Action parameter, `Register-WmiEvent` returns a background

 job that represents the event action. You can use the Job cmdlets, such as

 `Get-Job` and `Receive-Job`, to manage the event job.

 For more information, see about_Jobs

 (../Microsoft.PowerShell.Core/About/about_Jobs.md).

 ----- Example 4: Register for events on a remote computer -----

 Register-WmiEvent -Class 'Win32_ProcessStartTrace' -SourceIdentifier "Start"

 -Computername Server01

 Get-Event -SourceIdentifier "Start"

 Page 6/7

 WMI returns the events to the local computer and stores them in the event

 queue in the current session. To retrieve the events, run a local `Get-Event`

 command.

REMARKS

 To see the examples, type: "get-help Register-WmiEvent -examples".

 For more information, type: "get-help Register-WmiEvent -detailed".

 For technical information, type: "get-help Register-WmiEvent -full".

 For online help, type: "get-help Register-WmiEvent -online"

Page 7/7

