
PowerShell Get-Help on command 'Register-EngineEvent'

PS C:\Users\wahid> Get-Help Register-EngineEvent

NAME

 Register-EngineEvent

SYNOPSIS

 Subscribes to events that are generated by the PowerShell engine and by the

 `New-Event` cmdlet.

SYNTAX

 Register-EngineEvent [-SourceIdentifier] <System.String> [[-Action]

 <System.Management.Automation.ScriptBlock>] [-Forward] [-MaxTriggerCount

 <System.Int32>] [-MessageData <System.Management.Automation.PSObject>]

 [-SupportEvent] [<CommonParameters>]

DESCRIPTION

 The `Register-EngineEvent` cmdlet subscribes to events that are generated by

 the PowerShell engine and the `New-Event` cmdlet. Use the SourceIdentifier

 parameter to specify the event.

 You can use this cmdlet to subscribe to the OnIdle or Exiting engine events
Page 1/7

 and events generated by the `New-Event` cmdlet. These events are automatically

 added to the event queue in your session without subscribing. However,

 subscribing lets you forward the events, specify an action to respond to the

 events, and cancel the subscription.

 When you subscribe to an event, an event subscriber is added to your session.

 To get the event subscribers in the session, use the `Get-EventSubscriber`

 cmdlet. To cancel the subscription, use the `Unregister-Event` cmdlet, which

 deletes the event subscriber from the session.

 When the subscribed event is raised, it is added to the event queue in your

 session. To get events in the event queue, use the `Get-Event` cmdlet.

PARAMETERS

 -Action <System.Management.Automation.ScriptBlock>

 Specifies commands to handle the events. The commands in the Action run

 when an event is raised, instead of sending the event to the event queue.

 Enclose the commands in braces (`{}`) to create a script block.

 The value of the Action parameter can include the `$Event`,

 `$EventSubscriber`, `$Sender`, `$EventArgs`, and `$Args` automatic

 variables, which provide information about the event to the Action script

 block. For more information, see about_Automatic_Variables

 (../Microsoft.PowerShell.Core/About/about_Automatic_Variables.md).

 When you specify an action, `Register-EngineEvent` returns an event job

 object that represents that action. You can use the Job cmdlets to manage

 the event job.

 -Forward <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet sends events for this subscription to the

 session on the local computer. Use this parameter when you are registering Page 2/7

 for events on a remote computer or in a remote session.

 -MaxTriggerCount <System.Int32>

 Specifies the maximum number of times that the action is executed for the

 event subscription.

 -MessageData <System.Management.Automation.PSObject>

 Specifies additional data associated with the event. The value of this

 parameter appears in the MessageData property of the event object.

 -SourceIdentifier <System.String>

 Specifies the source identifier of the event to which you are subscribing.

 The source identifier must be unique in the current session. This

 parameter is required.

 The value of this parameter appears in the value of the SourceIdentifier

 property of the subscriber object and of all event objects associated with

 this subscription.

 The value is specific to the source of the event. This can be an arbitrary

 value you created to use with the `New-Event` cmdlet. The PowerShell

 engine supports the PSEngineEvent values PowerShell.Exiting and

 PowerShell.OnIdle .

 -SupportEvent <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet hides the event subscription. Add this parameter

 when the current subscription is part of a more complex event registration

 mechanism and it should not be discovered independently.

 To view or cancel a subscription that was created with the SupportEvent

 parameter, add the Force parameter to the `Get-EventSubscriber` or

 `Unregister-Event` cmdlets.

 Page 3/7

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 Example 1: Register a PowerShell engine event on remote computers

 $S = New-PSSession -ComputerName "Server01, Server02"

 Invoke-Command -Session $S {

 Register-EngineEvent -SourceIdentifier

 ([System.Management.Automation.PsEngineEvent]::Exiting) -Forward

 }

 `New-PSSession` creates a user-managed session (PSSession) on each of the

 remote computers.The `Invoke-Command` cmdlet runs the `Register-EngineEvent`

 command in the remote sessions. `Register-EngineEvent` uses the

 SourceIdentifier parameter to identify the event. The Forward parameter tell

 the engine to forward the events from the remote session to the local session.

 Example 2: Take a specified action when the Exiting event occurs

 Register-EngineEvent -SourceIdentifier PowerShell.Exiting -SupportEvent

 -Action {

 Get-History | Export-Clixml $HOME\history.clixml

 }

 The SupportEvent parameter is added to hide the event subscription. When

 PowerShell exits, in this case, the command history from the exiting session

 is exported an XML file in the user's `$HOME` directory.

 --- Example 3: Create and subscribe to a user-defined event ---

 Register-EngineEvent -SourceIdentifier MyEventSource -Action {

 "Event: {0}" -f $event.messagedata | Out-File c:\temp\MyEvents.txt -Append Page 4/7

 }

 Start-Job -Name TestJob -ScriptBlock {

 While ($True) {

 Register-EngineEvent -SourceIdentifier MyEventSource -Forward

 Start-Sleep -seconds 2

 "Doing some work..."

 New-Event -SourceIdentifier MyEventSource -Message ("{0} - Work

 done..." -f (Get-Date))

 }

 }

 Start-Sleep -seconds 4

 Get-EventSubscriber

 Get-Job

 SubscriptionId : 12

 SourceObject :

 EventName :

 SourceIdentifier : MyEventSource

 Action : System.Management.Automation.PSEventJob

 HandlerDelegate :

 SupportEvent : False

 ForwardEvent : False

 Id Name PSJobTypeName State HasMoreData Location

 Command

 -- ---- ------------- ----- ----------- --------

 18 MyEventSource Running True

 .

 19 TestJob BackgroundJob Running True localhost

 .

 Page 5/7

 `Register-EngineEvent` created Job Id 18. `Start-Job` created Job Id 19. In

 Example #4, we remove the event subscription and the jobs, then inspect the

 log file.

 -------- Example 4: Unregister events and clean up jobs --------

 PS> Start-Sleep -seconds 10

 PS> Get-EventSubscriber | Unregister-Event

 PS> Get-Job

 Id Name PSJobTypeName State HasMoreData Location

 Command

 -- ---- ------------- ----- ----------- --------

 18 MyEventSource Stopped False

 .

 19 TestJob BackgroundJob Running True localhost

 .

 PS> Stop-Job -Id 19

 PS> Get-Job | Remove-Job

 PS> Get-Content C:\temp\MyEvents.txt

 Event: 2/18/2020 2:36:19 PM - Work done...

 Event: 2/18/2020 2:36:21 PM - Work done...

 Event: 2/18/2020 2:36:23 PM - Work done...

 Event: 2/18/2020 2:36:25 PM - Work done...

 Event: 2/18/2020 2:36:27 PM - Work done...

 Event: 2/18/2020 2:36:29 PM - Work done...

 Event: 2/18/2020 2:36:31 PM - Work done...

 The `Unregister-Event` cmdlet stops the job associated with the event

 subscription (Job Id 18). Job Id 19 is still running and creating new events.

 We use the Job cmdlets stop the job and remove the unneeded job objects.

 `Get-Content` displays the contents of the log file. Page 6/7

REMARKS

 To see the examples, type: "get-help Register-EngineEvent -examples".

 For more information, type: "get-help Register-EngineEvent -detailed".

 For technical information, type: "get-help Register-EngineEvent -full".

 For online help, type: "get-help Register-EngineEvent -online"

Page 7/7

