
PowerShell Get-Help on command 'Receive-PSSession'

PS C:\Users\wahid> Get-Help Receive-PSSession

NAME

 Receive-PSSession

SYNOPSIS

 Gets results of commands in disconnected sessions

SYNTAX

 Receive-PSSession [-ConnectionUri] <System.Uri> [-AllowRedirection]

 [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-JobName

 <System.String>] -Name <System.String> [-OutTarget {Default | Host | Job}]

 [-SessionOption <System.Management.Automation.Remoting.PSSessionOption>]

 [-Confirm] [-WhatIf] [<CommonParameters>]

 Receive-PSSession [-ConnectionUri] <System.Uri> [-AllowRedirection]

 [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]
Page 1/20

 [-Credential <System.Management.Automation.PSCredential>] -InstanceId

 <System.Guid> [-JobName <System.String>] [-OutTarget {Default | Host | Job}]

 [-SessionOption <System.Management.Automation.Remoting.PSSessionOption>]

 [-Confirm] [-WhatIf] [<CommonParameters>]

 Receive-PSSession [-ComputerName] <System.String> [-ApplicationName

 <System.String>] [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] -InstanceId

 <System.Guid> [-JobName <System.String>] [-OutTarget {Default | Host | Job}]

 [-Port <System.Int32>] [-SessionOption

 <System.Management.Automation.Remoting.PSSessionOption>] [-UseSSL] [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Receive-PSSession [-ComputerName] <System.String> [-ApplicationName

 <System.String>] [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-JobName

 <System.String>] -Name <System.String> [-OutTarget {Default | Host | Job}]

 [-Port <System.Int32>] [-SessionOption

 <System.Management.Automation.Remoting.PSSessionOption>] [-UseSSL] [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Receive-PSSession [-Id] <System.Int32> [-JobName <System.String>] [-OutTarget

 {Default | Host | Job}] [-Confirm] [-WhatIf] [<CommonParameters>]

 Receive-PSSession -InstanceId <System.Guid> [-JobName <System.String>]

 [-OutTarget {Default | Host | Job}] [-Confirm] [-WhatIf] [<CommonParameters>]

 Receive-PSSession [-JobName <System.String>] -Name <System.String> [-OutTarget

 {Default | Host | Job}] [-Confirm] [-WhatIf] [<CommonParameters>] Page 2/20

 Receive-PSSession [-Session]

 <System.Management.Automation.Runspaces.PSSession> [-JobName <System.String>]

 [-OutTarget {Default | Host | Job}] [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Receive-PSSession` cmdlet gets the results of commands running in

 PowerShell sessions (PSSession) that were disconnected. If the session is

 currently connected, `Receive-PSSession` gets the results of commands that

 were running when the session was disconnected. If the session is still

 disconnected, `Receive-PSSession` connects to the session, resumes any

 commands that were suspended, and gets the results of commands running in the

 session.

 This cmdlet was introduced in PowerShell 3.0.

 You can use a `Receive-PSSession` in addition to or instead of a

 `Connect-PSSession` command. `Receive-PSSession` can connect to any

 disconnected or reconnected session that was started in other sessions or on

 other computers.

 `Receive-PSSession` works on PSSessions that were disconnected intentionally

 using the `Disconnect-PSSession` cmdlet or the `Invoke-Command`

 InDisconnectedSession parameter. Or disconnected unintentionally by a network

 interruption.

 If you use the `Receive-PSSession` cmdlet to connect to a session in which no

 commands are running or suspended, `Receive-PSSession` connects to the

 session, but returns no output or errors.

 For more information about the Disconnected Sessions feature, see

 about_Remote_Disconnected_Sessions Page 3/20

 (./About/about_Remote_Disconnected_Sessions.md).

 Some examples use splatting to reduce the line length and improve readability.

 For more information, see about_Splatting (./About/about_Splatting.md).

PARAMETERS

 -AllowRedirection <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet allows redirection of this connection to an

 alternate Uniform Resource Identifier (URI).

 When you use the ConnectionURI parameter, the remote destination can

 return an instruction to redirect to a different URI. By default,

 PowerShell doesn't redirect connections, but you can use this parameter to

 enable it to redirect the connection.

 You can also limit the number of times the connection is redirected by

 changing the MaximumConnectionRedirectionCount session option value. Use

 the MaximumRedirection parameter of the `New-PSSessionOption` cmdlet or

 set the MaximumConnectionRedirectionCount property of the

 `$PSSessionOption` preference variable. The default value is 5.

 -ApplicationName <System.String>

 Specifies an application. This cmdlet connects only to sessions that use

 the specified application.

 Enter the application name segment of the connection URI. For example, in

 the following connection URI, WSMan is the application name:

 `http://localhost:5985/WSMAN`.

 The application name of a session is stored in the

 Runspace.ConnectionInfo.AppName property of the session.

 Page 4/20

 The parameter's value is used to select and filter sessions. It doesn't

 change the application that the session uses.

 -Authentication

 <System.Management.Automation.Runspaces.AuthenticationMechanism>

 Specifies the mechanism that's used to authenticate the user credentials

 in the command to reconnect to a disconnected session. The acceptable

 values for this parameter are:

 - Default

 - Basic

 - Credssp

 - Digest

 - Kerberos

 - Negotiate

 - NegotiateWithImplicitCredential

 The default value is Default.

 For more information about the values of this parameter, see

 AuthenticationMechanism Enumeration (/dotnet/api/system.management.automati

 on.runspaces.authenticationmechanism).

 > [!CAUTION] > Credential Security Support Provider (CredSSP)

 authentication, in which the user credentials are > passed to a remote

 computer to be authenticated, is designed for commands that require >

 authentication on more than one resource, such as accessing a remote Page 5/20

 network share. This mechanism > increases the security risk of the remote

 operation. If the remote computer is compromised, the > credentials that

 are passed to it can be used to control the network session.

 -CertificateThumbprint <System.String>

 Specifies the digital public key certificate (X509) of a user account that

 has permission to connect to the disconnected session. Enter the

 certificate thumbprint of the certificate.

 Certificates are used in client certificate-based authentication.

 Certificates can be mapped only to local user accounts, and don't work

 with domain accounts.

 To get a certificate thumbprint, use a `Get-Item` or `Get-ChildItem`

 command in the PowerShell `Cert:` drive.

 -ComputerName <System.String>

 Specifies the computer on which the disconnected session is stored.

 Sessions are stored on the computer that's at the server-side, or

 receiving end of a connection. The default is the local computer.

 Type the NetBIOS name, an IP address, or a fully qualified domain name

 (FQDN) of one computer. Wildcard characters aren't permitted. To specify

 the local computer, type the computer name, a dot (`.`),

 `$env:COMPUTERNAME`, or localhost.

 -ConfigurationName <System.String>

 Specifies the name of a session configuration. This cmdlet connects only

 to sessions that use the specified session configuration.

 Enter a configuration name or the fully qualified resource URI for a

 session configuration. If you specify only the configuration name, the Page 6/20

 following schema URI is prepended:

 `http://schemas.microsoft.com/powershell`.

 The configuration name of a session is stored in the ConfigurationName

 property of the session.

 The parameter's value is used to select and filter sessions. It doesn't

 change the session configuration that the session uses.

 For more information about session configurations, see

 about_Session_Configurations (./About/about_Session_Configurations.md).

 -ConnectionUri <System.Uri>

 Specifies a URI that defines the connection endpoint that is used to

 reconnect to the disconnected session.

 The URI must be fully qualified. The string's format is as follows:

 `<Transport>://<ComputerName>:<Port>/<ApplicationName>`

 The default value is as follows:

 `http://localhost:5985/WSMAN`

 If you don't specify a connection URI, you can use the UseSSL ,

 ComputerName , Port , and ApplicationName parameters to specify the

 connection URI values.

 Valid values for the Transport segment of the URI are HTTP and HTTPS. If

 you specify a connection URI with a Transport segment, but don't specify a

 port, the session is created with standard ports: 80 for HTTP and 443 for

 HTTPS. To use the default ports for PowerShell remoting, specify port 5985 Page 7/20

 for HTTP or 5986 for HTTPS.

 If the destination computer redirects the connection to a different URI,

 PowerShell prevents the redirection unless you use the AllowRedirection

 parameter in the command.

 -Credential <System.Management.Automation.PSCredential>

 Specifies a user account that has permission to connect to the

 disconnected session. The default is the current user.

 Type a user name, such as User01 or Domain01\User01 , or enter a

 PSCredential object generated by the `Get-Credential` cmdlet. If you type

 a user name, you're prompted to enter the password.

 Credentials are stored in a PSCredential

 (/dotnet/api/system.management.automation.pscredential)object and the

 password is stored as a SecureString

 (/dotnet/api/system.security.securestring).

 > [!NOTE] > For more information about SecureString data protection, see >

 How secure is SecureString?

 (/dotnet/api/system.security.securestring#how-secure-is-securestring).

 -Id <System.Int32>

 Specifies the ID of a disconnected session. The Id parameter works only

 when the disconnected session was previously connected to the current

 session.

 This parameter is valid, but not effective, when the session is stored on

 the local computer, but wasn't connected to the current session.

 -InstanceId <System.Guid>

 Specifies the instance ID of the disconnected session. The instance ID is Page 8/20

 a GUID that uniquely identifies a PSSession on a local or remote computer.

 The instance ID is stored in the InstanceID property of the PSSession .

 -JobName <System.String>

 Specifies a friendly name for the job that `Receive-PSSession` returns.

 `Receive-PSSession` returns a job when the value of the OutTarget

 parameter is Job or the job that's running in the disconnected session was

 started in the current session.

 If the job that's running in the disconnected session was started in the

 current session, PowerShell reuses the original job object in the session

 and ignores the value of the JobName parameter.

 If the job that's running in the disconnected session was started in a

 different session, PowerShell creates a new job object. It uses a default

 name, but you can use this parameter to change the name.

 If the default value or explicit value of the OutTarget parameter isn't

 Job, the command succeeds, but the JobName parameter has no effect.

 -Name <System.String>

 Specifies the friendly name of the disconnected session.

 -OutTarget <Microsoft.PowerShell.Commands.OutTarget>

 Determines how the session results are returned. The acceptable values for

 this parameter are:

 - Job . Returns the results asynchronously in a job object. You can use

 the JobName parameter to specify a name or new name for the job. - Host

 . Returns the results to the command line (synchronously). If the command

 is being resumed or the results consist of a large number of objects,

 the response might be delayed. Page 9/20

 The default value of the OutTarget parameter is Host. If the command

 that's being received in a disconnected session was started in the current

 session, the default value of the OutTarget parameter is the form in which

 the command was started. If the command was started as a job, by default,

 it's returned as a job. Otherwise, it's returned to the host program by

 default.

 Typically, the host program displays returned objects at the command line

 without delay, but this behavior can vary.

 -Port <System.Int32>

 Specifies the remote computer's network port that's used to reconnect to

 the session. To connect to a remote computer, it must be listening on the

 port that the connection uses. The default ports are 5985, which is the

 WinRM port for HTTP, and 5986, which is the WinRM port for HTTPS.

 Before using an alternate port, you must configure the WinRM listener on

 the remote computer to listen on that port. To configure the listener,

 type the following two commands at the PowerShell prompt:

 `Remove-Item -Path WSMan:\Localhost\listener\listener* -Recurse`

 `New-Item -Path WSMan:\Localhost\listener -Transport http -Address * -Port

 <port-number>`

 Don't use the Port parameter unless it's necessary. The port that's set in

 the command applies to all computers or sessions on which the command

 runs. An alternate port setting might prevent the command from running on

 all computers.

 -Session <System.Management.Automation.Runspaces.PSSession>

 Specifies the disconnected session. Enter a variable that contains the Page 10/20

 PSSession or a command that creates or gets the PSSession , such as a

 `Get-PSSession` command.

 -SessionOption <System.Management.Automation.Remoting.PSSessionOption>

 Specifies advanced options for the session. Enter a SessionOption object,

 such as one that you create by using the `New-PSSessionOption` cmdlet, or

 a hash table in which the keys are session option names and the values are

 session option values.

 The default values for the options are determined by the value of the

 `$PSSessionOption` preference variable, if it's set. Otherwise, the

 default values are established by options set in the session configuration.

 The session option values take precedence over default values for sessions

 set in the `$PSSessionOption` preference variable and in the session

 configuration. However, they don't take precedence over maximum values,

 quotas, or limits set in the session configuration.

 For a description of the session options that includes the default values,

 see `New-PSSessionOption`. For information about the $PSSessionOption

 preference variable, see about_Preference_Variables

 (./About/about_Preference_Variables.md). For more information about

 session configurations, see about_Session_Configurations

 (./About/about_Session_Configurations.md).

 -UseSSL <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet uses the Secure Sockets Layer (SSL) protocol to

 connect to the disconnected session. By default, SSL isn't used.

 WS-Management encrypts all PowerShell content transmitted over the

 network. UseSSL is an additional protection that sends the data across an

 HTTPS connection instead of an HTTP connection.

 Page 11/20

 If you use this parameter and SSL isn't available on the port that's used

 for the command, the command fails.

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet isn't run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------------- Example 1: Connect to a PSSession --------------

 Receive-PSSession -ComputerName Server01 -Name ITTask

 The `Receive-PSSession` specifies the remote computer with the ComputerName

 parameter. The Name parameter identifies the ITTask session on the Server01

 computer. The example gets the results of commands that were running in the

 ITTask session.

 Because the command doesn't use the OutTarget parameter, the results appear on

 the command line.

 Example 2: Get results of all commands on disconnected sessions

 Get-PSSession -ComputerName Server01, Server02 | Receive-PSSession

 `Get-PSSession` uses the ComputerName parameter to specify the remote

 computers. The objects are sent down the pipeline to `Receive-PSSession`.

 - Example 3: Get the results of a script running in a session - Page 12/20

 $parms = @{

 ComputerName = "Server01"

 Name = "ITTask"

 OutTarget = "Job"

 JobName = "ITTaskJob01"

 Credential = "Domain01\Admin01"

 }

 Receive-PSSession @parms

 Id Name State HasMoreData Location

 -- ---- ----- ----------- --------

 16 ITTaskJob01 Running True Server01

 The command uses the ComputerName and Name parameters to identify the

 disconnected session. It uses the OutTarget parameter with a value of Job to

 direct `Receive-PSSession` to return the results as a job. The JobName

 parameter specifies a name for the job in the reconnected session. The

 Credential parameter runs the `Receive-PSSession` command using the

 permissions of a domain administrator.

 The output shows that `Receive-PSSession` returned the results as a job in the

 current session. To get the job results, use a `Receive-Job` command

 -------- Example 4: Get results after a network outage --------

 PS> $s = New-PSSession -ComputerName Server01 -Name AD -ConfigurationName

 ADEndpoint

 PS> $s

 Id Name ComputerName State ConfigurationName Availability

 -- ---- ------------ ----- ----------------- ------------

 8 AD Server01 Opened ADEndpoint Available

 Page 13/20

 PS> Invoke-Command -Session $s -FilePath

 \\Server12\Scripts\SharedScripts\New-ADResolve.ps1

 Running "New-ADResolve.ps1"

 # Network outage

 # Restart local computer

 # Network access is not re-established within 4 minutes

 PS> Get-PSSession -ComputerName Server01

 Id Name ComputerName State ConfigurationName Availability

 -- ---- ------------ ----- ----------------- ------------

 1 Backup Server01 Disconnected Microsoft.PowerShell None

 8 AD Server01 Disconnected ADEndpoint None

 PS> Receive-PSSession -ComputerName Server01 -Name AD -OutTarget Job -JobName

 AD

 Job Id Name State HasMoreData Location

 -- ---- ----- ----------- --------

 16 ADJob Running True Server01

 PS> Get-PSSession -ComputerName Server01

 Id Name ComputerName State ConfigurationName Availability

 -- ---- ------------ ----- ----------------- ------------

 1 Backup Server01 Disconnected Microsoft.PowerShell Busy

 8 AD Server01 Opened ADEndpoint Available Page 14/20

 The `New-PSSession` cmdlet creates a session on the Server01 computer and

 saves the session in the `$s` variable. The `$s` variable displays that the

 State is Opened and the Availability is Available. These values indicate that

 you're connected to the session and can run commands in the session.

 The `Invoke-Command` cmdlet runs a script in the session in the `$s` variable.

 The script begins to run and return data, but a network outage occurs that

 interrupts the session. The user has to exit the session and restart the local

 computer.

 When the computer restarts, the user starts PowerShell and runs a

 `Get-PSSession` command to get sessions on the Server01 computer. The output

 shows that the AD session still exists on the Server01 computer. The State

 indicates that the AD session is disconnected. The Availability value of None,

 indicates that the session isn't connected to any client sessions.

 The `Receive-PSSession` cmdlet reconnects to the AD session and gets the

 results of the script that ran in the session. The command uses the OutTarget

 parameter to request the results in a job named ADJob . The command returns a

 job object and the output indicates that the script is still running.

 The `Get-PSSession` cmdlet is used to check the job state. The output confirms

 that the `Receive-PSSession` cmdlet reconnected to the AD session, which is

 now open and available for commands. And, the script resumed execution and is

 getting the script results.

 -------- Example 5: Reconnect to disconnected sessions --------

 PS> $parms = @{

 InDisconnectedSession = $True

 ComputerName = "Server01", "Server02", "Server30"

 FilePath = "\\Server12\Scripts\SharedScripts\Get-BugStatus.ps1"

 Name = "BugStatus" Page 15/20

 SessionOption = @{IdleTimeout = 86400000}

 ConfigurationName = "ITTasks"

 }

 PS> Invoke-Command @parms

 PS> Exit

 PS> $s = Get-PSSession -ComputerName Server01, Server02, Server30 -Name

 BugStatus

 PS> $s

 Id Name ComputerName State ConfigurationName Availability

 -- ---- ------------ ----- ----------------- ------------

 1 ITTask Server01 Disconnected ITTasks None

 8 ITTask Server02 Disconnected ITTasks None

 2 ITTask Server30 Disconnected ITTasks None

 PS> $Results = Receive-PSSession -Session $s

 PS> $s

 Id Name ComputerName State ConfigurationName Availability

 -- ---- ------------ ----- ----------------- ------------

 1 ITTask Server01 Opened ITTasks Available

 8 ITTask Server02 Opened ITTasks Available

 2 ITTask Server30 Opened ITTasks Available

 PS> $Results

 Bug Report - Domain 01

 ComputerName BugCount LastUpdated Page 16/20

 -------------- --------- ------------

 Server01 121 Friday, December 30, 2011 5:03:34 PM

 The `Invoke-Command` cmdlet runs a script on three remote computers. Because

 the script gathers and summarizes data from multiple databases, it often takes

 the script an extended time to finish. The command uses the

 InDisconnectedSession parameter that starts the scripts and then immediately

 disconnects the sessions. The SessionOption parameter extends the IdleTimeout

 value of the disconnected session. Disconnected sessions are considered idle

 from the moment they're disconnected. It's important to set the idle time-out

 for long enough so that the commands can complete and you can reconnect to the

 session. You can set the IdleTimeout only when you create the PSSession and

 change it only when you disconnect from it. You can't change the IdleTimeout

 value when you connect to a PSSession or receiving its results. After running

 the command, the user exits PowerShell and closes the computer.

 The next day, the user resumes Windows, starts PowerShell, and uses

 `Get-PSSession` to get the sessions in which the scripts were running. The

 command identifies the sessions by the computer name, session name, and the

 name of the session configuration and saves the sessions in the `$s` variable.

 The value of the `$s` variable is displayed and shows that the sessions are

 disconnected, but aren't busy.

 The `Receive-PSSession` cmdlet connects to the sessions in the `$s` variable

 and gets their results. The command saves the results in the `$Results`

 variable. The `$s` variable is displayed and shows that the sessions are

 connected and available for commands.

 The script results in the `$Results` variable are displayed in the PowerShell

 console. If any of the results are unexpected, the user can run commands in

 the sessions to investigate the root cause.

 ------ Example 6: Running a job in a disconnected session ------

 Page 17/20

 PS> $s = New-PSSession -ComputerName Server01 -Name Test

 PS> $j = Invoke-Command -Session $s { 1..1500 | Foreach-Object {"Return $_";

 sleep 30}} -AsJob

 PS> $j

 Id Name State HasMoreData Location

 -- ---- ----- ----------- --------

 16 Job1 Running True Server01

 PS> $s | Disconnect-PSSession

 Id Name ComputerName State ConfigurationName Availability

 -- ---- ------------ ----- ----------------- ------------

 1 Test Server01 Disconnected Microsoft.PowerShell None

 PS> $j

 Id Name State HasMoreData Location

 -- ---- ----- ----------- --------

 16 Job1 Disconnected True Server01

 PS> Receive-Job $j -Keep

 Return 1

 Return 2

 PS> $s2 = Connect-PSSession -ComputerName Server01 -Name Test

 PS> $j2 = Receive-PSSession -ComputerName Server01 -Name Test

 PS> Receive-Job $j Page 18/20

 Return 3

 Return 4

 The `New-PSSession` cmdlet creates the Test session on the Server01 computer.

 The command saves the session in the `$s` variable.

 The `Invoke-Command` cmdlet runs a command in the session in the `$s`

 variable. The command uses the AsJob parameter to run the command as a job and

 creates the job object in the current session. The command returns a job

 object that's saved in the `$j` variable. The `$j` variable displays the job

 object.

 The session object in the `$s` variable is sent down the pipeline to

 `Disconnect-PSSession` and the session is disconnected.

 The `$j` variable is displayed and shows the effect of disconnecting the job

 object in the `$j` variable. The job state is now Disconnected.

 The `Receive-Job` is run on the job in the `$j` variable. The output shows

 that the job began to return output before the session and the job were

 disconnected.

 The `Connect-PSSession` cmdlet is run in the same client session. The command

 reconnects to the Test session on the Server01 computer and saves the session

 in the `$s2` variable.

 The `Receive-PSSession` cmdlet gets the results of the job that was running in

 the session. Because the command is run in the same session,

 `Receive-PSSession` returns the results as a job by default and reuses the

 same job object. The command saves the job in the `$j2` variable. The

 `Receive-Job` cmdlet gets the results of the job in the `$j` variable.

REMARKS Page 19/20

 To see the examples, type: "get-help Receive-PSSession -examples".

 For more information, type: "get-help Receive-PSSession -detailed".

 For technical information, type: "get-help Receive-PSSession -full".

 For online help, type: "get-help Receive-PSSession -online"

Page 20/20

