
PowerShell Get-Help on command 'Receive-Job'

PS C:\Users\wahid> Get-Help Receive-Job

NAME

 Receive-Job

SYNOPSIS

 Gets the results of the PowerShell background jobs in the current session.

SYNTAX

 Receive-Job [-Job] <System.Management.Automation.Job[]> [[-ComputerName]

 <System.String[]>] [-AutoRemoveJob] [-Force] [-Keep] [-NoRecurse] [-Wait]

 [-WriteEvents] [-WriteJobInResults] [<CommonParameters>]

 Receive-Job [-Id] <System.Int32[]> [-AutoRemoveJob] [-Force] [-Keep]

 [-NoRecurse] [-Wait] [-WriteEvents] [-WriteJobInResults] [<CommonParameters>]

 Receive-Job [-InstanceId] <System.Guid[]> [-AutoRemoveJob] [-Force] [-Keep]

 [-NoRecurse] [-Wait] [-WriteEvents] [-WriteJobInResults] [<CommonParameters>]

 Receive-Job [-Job] <System.Management.Automation.Job[]> [[-Location]

 <System.String[]>] [-AutoRemoveJob] [-Force] [-Keep] [-NoRecurse] [-Wait]

 [-WriteEvents] [-WriteJobInResults] [<CommonParameters>]
Page 1/13

 Receive-Job [-Job] <System.Management.Automation.Job[]> [[-Session]

 <System.Management.Automation.Runspaces.PSSession[]>] [-AutoRemoveJob]

 [-Force] [-Keep] [-NoRecurse] [-Wait] [-WriteEvents] [-WriteJobInResults]

 [<CommonParameters>]

 Receive-Job [-Name] <System.String[]> [-AutoRemoveJob] [-Force] [-Keep]

 [-NoRecurse] [-Wait] [-WriteEvents] [-WriteJobInResults] [<CommonParameters>]

DESCRIPTION

 The `Receive-Job` cmdlet gets the results of PowerShell background jobs, such

 as those started by using the `Start-Job` cmdlet or the AsJob parameter of any

 cmdlet. You can get the results of all jobs or identify jobs by their name,

 ID, instance ID, computer name, location, or session, or by submitting a job

 object.

 When you start a PowerShell background job, the job starts, but the results

 don't appear immediately. Instead, the command returns an object that

 represents the background job. The job object contains useful information

 about the job, but it doesn't contain the results. This method lets you

 continue to work in the session while the job runs. For more information about

 background jobs in PowerShell, see about_Jobs (./About/about_Jobs.md).

 The `Receive-Job` cmdlet gets the results that have been generated by the time

 that the `Receive-Job` command is submitted. If the results aren't yet

 complete, you can run additional `Receive-Job` commands to get the remaining

 results.

 By default, job results are deleted from the system when you receive them, but

 you can use the Keep parameter to save the results so that you can receive

 them again. To delete the job results, run the `Receive-Job` command again

 without the Keep parameter, close the session, or use the `Remove-Job` cmdlet Page 2/13

 to delete the job from the session.

 Starting in Windows PowerShell 3.0, `Receive-Job` also gets the results of

 custom job types, such as workflow jobs and instances of scheduled jobs. To

 enable `Receive-Job` to get the results a custom job type, import the module

 that supports the custom job type into the session before it runs a

 `Receive-Job` command, either by using the `Import-Module` cmdlet or by

 getting a cmdlet in the module. For information about a particular custom job

 type, see the documentation of the custom job type feature.

PARAMETERS

 -AutoRemoveJob <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet deletes the job after it returns the job

 results. If the job has more results, the job is still deleted, but

 `Receive-Job` displays a message.

 This parameter works only on custom job types. It's designed for instances

 of job types that save the job or the type outside of the session, such as

 instances of scheduled jobs.

 This parameter can't be used without the Wait parameter.

 This parameter was introduced in Windows PowerShell 3.0.

 -ComputerName <System.String[]>

 Specifies an array of names of computers.

 This parameter selects from among the job results that are stored on the

 local computer. It doesn't get data for jobs run on remote computers. To

 get job results that are stored on remote computers, use the

 `Invoke-Command` cmdlet to run a `Receive-Job` command remotely.

 Page 3/13

 -Force <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet continues waiting if jobs are in the Suspended

 or Disconnected state. By default, the Wait parameter of `Receive-Job`

 returns, or terminates the wait, when jobs are in one of the following

 states:

 - Completed

 - Failed

 - Stopped

 - Suspended

 - Disconnected.

 The Force parameter is valid only when the Wait parameter is also used in

 the command.

 This parameter was introduced in Windows PowerShell 3.0.

 -Id <System.Int32[]>

 Specifies an array of IDs. This cmdlet gets the results of jobs with the

 specified IDs.

 The ID is an integer that uniquely identifies the job in the current

 session. it's easier to remember and type than the instance ID, but it's

 unique only in the current session. You can type one or more IDs separated

 by commas. To find the ID of a job, use `Get-Job`.

 -InstanceId <System.Guid[]>

 Specifies an array of instance IDs. This cmdlet gets the results of jobs Page 4/13

 with the specified instance IDs.

 An instance ID is a GUID that uniquely identifies the job on the computer.

 To find the instance ID of a job, use the `Get-Job` cmdlet.

 -Job <System.Management.Automation.Job[]>

 Specifies the job for which results are being retrieved.

 Enter a variable that contains the job or a command that gets the job. You

 can also pipe a job object to `Receive-Job`.

 -Keep <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet saves the aggregated stream data in the system,

 even after you have received them. By default, aggregated stream data is

 erased after viewed with `Receive-Job`.

 Closing the session, or removing the job with the `Remove-Job` cmdlet also

 deletes aggregated stream data.

 -Location <System.String[]>

 Specifies an array of locations. This cmdlet gets only the results of jobs

 in the specified locations.

 -Name <System.String[]>

 Specifies an array of friendly names. This cmdlet gets the results of jobs

 that have the specified names. Wildcard characters are supported.

 -NoRecurse <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets results only from the specified job. By

 default, `Receive-Job` also gets the results of all child jobs of the

 specified job.

 -Session <System.Management.Automation.Runspaces.PSSession[]> Page 5/13

 Specifies an array of sessions. This cmdlet gets the results of jobs that

 were run in the specified PowerShell session (PSSession). Enter a

 variable that contains the PSSession or a command that gets the PSSession

 , such as a `Get-PSSession` command.

 -Wait <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet suppresses the command prompt until all job

 results are received. By default, `Receive-Job` immediately returns the

 available results.

 By default, the Wait parameter waits until the job is in one of the

 following states:

 - Completed

 - Failed

 - Stopped

 - Suspended

 - Disconnected

 To direct the Wait parameter to continue waiting if the job state is

 Suspended or Disconnected, use the Force parameter together with the Wait

 parameter.

 This parameter was introduced in Windows PowerShell 3.0.

 -WriteEvents <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet reports changes in the job state while it waits

 for the job to finish. Page 6/13

 This parameter is valid only when the Wait parameter is used in the

 command and the Keep parameter is omitted.

 This parameter was introduced in Windows PowerShell 3.0.

 -WriteJobInResults <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet returns the job object followed by the results.

 This parameter is valid only when the Wait parameter is used in the

 command and the Keep parameter is omitted.

 This parameter was introduced in Windows PowerShell 3.0.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 --------- Example 1: Get results for a particular job ---------

 $job = Start-Job -ScriptBlock {Get-Process}

 Start-Sleep -Seconds 1

 Receive-Job -Job $job

 These commands use the Job parameter of `Receive-Job` to get the results of a

 particular job.

 The first command starts a job with `Start-Job` and stores the job object in

 the `$job` variable.

 The second command uses the `Receive-Job` cmdlet to get the results of the Page 7/13

 job. It uses the Job parameter to specify the job.

 -------------- Example 2: Use the Keep parameter --------------

 $job = Start-Job -ScriptBlock {Get-Service dhcp, fakeservice}

 Start-Sleep -Seconds 1

 $job | Receive-Job -Keep

 Cannot find any service with service name 'fakeservice'.

 + CategoryInfo : ObjectNotFound: (fakeservice:String)

 [Get-Service], ServiceCommandException

 + FullyQualifiedErrorId :

 NoServiceFoundForGivenName,Microsoft.PowerShell.Commands.GetServiceCommand

 + PSComputerName : localhost

 Status Name DisplayName

 ------ ---- -----------

 Running dhcp DHCP Client

 $job | Receive-Job -Keep

 Cannot find any service with service name 'fakeservice'.

 + CategoryInfo : ObjectNotFound: (fakeservice:String)

 [Get-Service], ServiceCommandException

 + FullyQualifiedErrorId :

 NoServiceFoundForGivenName,Microsoft.PowerShell.Commands.GetServiceCommand

 + PSComputerName : localhost

 Status Name DisplayName

 ------ ---- -----------

 Running dhcp DHCP Client

 This example stores a job in the `$job` variable, and pipes the job to the

 `Receive-Job` cmdlet. The `-Keep` parameter is also used to allow all Page 8/13

 aggregated stream data to be retrieved again after first view.

 ------ Example 3: Get results of several background jobs ------

 # Use the Invoke-Command cmdlet with the -AsJob parameter to start a

 background job that

 # runs a Get-Service command on three remote computers. Store the resulting

 job object in

 # the $j variable

 $j = Invoke-Command -ComputerName Server01, Server02, Server03 -ScriptBlock

 {Get-Service} -AsJob

 # Display the value of the **ChildJobs** property of the job object in $j. The

 display

 # shows that the command created three child jobs, one for the job on each

 remote

 # computer. You could also use the -IncludeChildJobs parameter of the Get-Job

 cmdlet.

 $j.ChildJobs

 Id Name State HasMoreData Location Command

 -- ---- ----- ----------- -------- -------

 2 Job2 Completed True Server01 Get-Service

 3 Job3 Completed True Server02 Get-Service

 4 Job4 Completed True Server03 Get-Service

 # Use the Receive-Job cmdlet to get the results of just the Job3 child job

 that ran on the

 # Server02 computer. Use the *Keep* parameter to allow you to view the

 aggregated stream

 # data more than once.

 Receive-Job -Name Job3 -Keep

 Status Name DisplayName PSComputerName

 ------ ----------- ----------- -------------- Page 9/13

 Running AeLookupSvc Application Experience Server02

 Stopped ALG Application Layer Gateway Service Server02

 Running Appinfo Application Information Server02

 Running AppMgmt Application Management Server02

 Example 4: Get results of background jobs on multiple remote computers

 # Use the New-PSSession cmdlet to create three user-managed PSSessions on

 three servers,

 # and save the sessions in the $s variable.

 $s = New-PSSession -ComputerName Server01, Server02, Server03

 # Use Invoke-Command run a Start-Job command in each of the PSSessions in the

 $s variable.

 # The code creates a new job with a custom name to each server. The job

 outputs the

 # datetime from each server. Save the job objects in the $j variable.

 $invokeCommandSplat = @{

 Session = $s

 ScriptBlock = {

 Start-Job -Name $('MyJob-' +$env:COMPUTERNAME) -ScriptBlock {

 (Get-Date).ToString()

 }

 }

 }

 $j = Invoke-Command @invokeCommandSplat

 # To confirm that these job objects are from the remote machines, run Get-Job

 to show no

 # local jobs running.

 Get-Job`

 # Display the three job objects in $j. Note that the Localhost location is not

 the local

 # computer, but instead localhost as it relates to the job on each Server. Page 10/13

 $j

 Id Name State HasMoreData Location Command

 -- ---- ----- ----------- -------- -------

 1 MyJob-Server01 Completed True Localhost

 (Get-Date).ToString()

 2 MyJob-Server02 Completed True Localhost

 (Get-Date).ToString()

 3 MyJob-Server03 Completed True Localhost

 (Get-Date).ToString()

 # Use Invoke-Command to run a Receive-Job command in each of the sessions in

 the $s

 # variable and save the results in the $results variable. The Receive-Job

 command must be

 # run in each session because the jobs were run locally on each server.

 $results = Invoke-Command -Session $s -ScriptBlock {

 Receive-Job -Name $('MyJob-' +$env:COMPUTERNAME)

 }

 3/22/2021 7:41:47 PM

 3/22/2021 7:41:47 PM

 3/22/2021 9:41:47 PM

 This example shows how to get the results of background jobs run on three

 remote computers. Unlike the previous example, using `Invoke-Command` to run

 the `Start-Job` command actually started three independent jobs on each of the

 three computers. As a result, the command returned three job objects

 representing three jobs run locally on three different computers.

 ----------------- Example 5: Access child jobs -----------------

 Start-Job -Name TestJob -ScriptBlock {dir C:\, Z:\}

 # Without the Keep parameter, aggregated child job data is displayed once. Page 11/13

 # Then destroyed.

 Receive-Job -Name TestJob

 Directory: C:\

 Mode LastWriteTime Length Name

 ---- ------------- ------ ----

 d-r--- 1/24/2019 7:11 AM Program Files

 d-r--- 2/13/2019 8:32 AM Program Files (x86)

 d-r--- 10/3/2018 11:47 AM Users

 d----- 2/7/2019 1:52 AM Windows

 Cannot find drive. A drive with the name 'Z' does not exist.

 + CategoryInfo : ObjectNotFound: (Z:String) [Get-ChildItem],

 DriveNotFoundException

 + FullyQualifiedErrorId :

 DriveNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

 + PSComputerName : localhost

 # It would seem that the child job data is gone.

 Receive-Job -Name TestJob

 # Using the object model, you can still retrieve child job data and streams.

 $job = Get-Job -Name TestJob

 $job.ChildJobs[0].Error

 Cannot find drive. A drive with the name 'Z' does not exist.

 + CategoryInfo : ObjectNotFound: (Z:String) [Get-ChildItem],

 DriveNotFoundException

 + FullyQualifiedErrorId :

 DriveNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

 + PSComputerName : localhost Page 12/13

REMARKS

 To see the examples, type: "get-help Receive-Job -examples".

 For more information, type: "get-help Receive-Job -detailed".

 For technical information, type: "get-help Receive-Job -full".

 For online help, type: "get-help Receive-Job -online"

Page 13/13

