
PowerShell Get-Help on command 'Protect-CmsMessage'

PS C:\Users\wahid> Get-Help Protect-CmsMessage

NAME

 Protect-CmsMessage

SYNOPSIS

 Encrypts content by using the Cryptographic Message Syntax format.

SYNTAX

 Protect-CmsMessage [-To] <System.Management.Automation.CmsMessageRecipient[]>

 [-Content] <System.Management.Automation.PSObject> [[-OutFile]

 <System.String>] [<CommonParameters>]

 Protect-CmsMessage [-To] <System.Management.Automation.CmsMessageRecipient[]>

 [-LiteralPath] <System.String> [[-OutFile] <System.String>]

 [<CommonParameters>]

 Protect-CmsMessage [-To] <System.Management.Automation.CmsMessageRecipient[]>

 [-Path] <System.String> [[-OutFile] <System.String>] [<CommonParameters>]

DESCRIPTION
Page 1/5

 The `Protect-CmsMessage` cmdlet encrypts content by using the Cryptographic

 Message Syntax (CMS) format.

 The CMS cmdlets support encryption and decryption of content using the IETF

 format as documented by RFC5652 (https://tools.ietf.org/html/rfc5652.html).

 The CMS encryption standard uses public key cryptography, where the keys used

 to encrypt content (the public key) and the keys used to decrypt content (the

 private key) are separate. Your public key can be shared widely, and is not

 sensitive data. If any content is encrypted with this public key, only your

 private key can decrypt it. For more information, see Public-key cryptography

 (https://en.wikipedia.org/wiki/Public-key_cryptography).

 Before you can run the `Protect-CmsMessage` cmdlet, you must have an

 encryption certificate set up. To be recognized in PowerShell, encryption

 certificates require a unique extended key usage (EKU

 (/windows/desktop/SecCrypto/eku))ID to identify them as data encryption

 certificates (such as the IDs for Code Signing and Encrypted Mail). For an

 example of a certificate that would work for document encryption, see Example

 1 in this topic.

PARAMETERS

 -Content <System.Management.Automation.PSObject>

 Specifies a PSObject that contains content that you want to encrypt. For

 example, you can encrypt the content of an event message, and then use the

 variable containing the message (`$Event`, in this example) as the value

 of the Content parameter: `$event = Get-WinEvent -ProviderName

 "PowerShell" -MaxEvents 1`. You can also use the `Get-Content` cmdlet to

 get the contents of a file, such as a Microsoft Word document, and save

 the content in a variable that you use as the value of the Content

 parameter.

 Page 2/5

 -LiteralPath <System.String>

 Specifies the path to content that you want to encrypt. Unlike Path , the

 value of LiteralPath is used exactly as it is typed. No characters are

 interpreted as wildcards. If the path includes escape characters, enclose

 it in single quotation marks. Single quotation marks tell PowerShell not

 to interpret any characters as escape sequences.

 -OutFile <System.String>

 Specifies the path and file name of a file to which you want to send the

 encrypted content.

 -Path <System.String>

 Specifies the path to content that you want to encrypt.

 -To <System.Management.Automation.CmsMessageRecipient[]>

 Specifies one or more CMS message recipients, identified in any of the

 following formats:

 - An actual certificate (as retrieved from the certificate provider).

 - Path to the file containing the certificate.

 - Path to a directory containing the certificate.

 - Thumbprint of the certificate (used to look in the certificate store).

 - Subject name of the certificate (used to look in the certificate store).

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216). Page 3/5

 ---- Example 1: Create a certificate for encrypting content ----

 # Create .INF file for certreq

 {[Version]

 Signature = "$Windows NT$"

 [Strings]

 szOID_ENHANCED_KEY_USAGE = "2.5.29.37"

 szOID_DOCUMENT_ENCRYPTION = "1.3.6.1.4.1.311.80.1"

 [NewRequest]

 Subject = "cn=youralias@emailaddress.com"

 MachineKeySet = false

 KeyLength = 2048

 KeySpec = AT_KEYEXCHANGE

 HashAlgorithm = Sha1

 Exportable = true

 RequestType = Cert

 KeyUsage = "CERT_KEY_ENCIPHERMENT_KEY_USAGE | CERT_DATA_ENCIPHERMENT_KEY_USAGE"

 ValidityPeriod = "Years"

 ValidityPeriodUnits = "1000"

 [Extensions]

 %szOID_ENHANCED_KEY_USAGE% = "{text}%szOID_DOCUMENT_ENCRYPTION%"

 } | Out-File -FilePath DocumentEncryption.inf

 # After you have created your certificate file, run the following command to

 add

 # the certificate file to the certificate store. Now you are ready to encrypt

 and

 # decrypt content with the next two examples.

 certreq.exe -new DocumentEncryption.inf DocumentEncryption.cer Page 4/5

 ---------- Example 2: Encrypt a message sent by email ----------

 $Protected = "Hello World" | Protect-CmsMessage -To

 "*youralias@emailaddress.com*"

 In the following example, you encrypt a message, "Hello World", by piping it

 to the `Protect-CmsMessage` cmdlet, and then save the encrypted message in a

 variable. The To parameter uses the value of the Subject line in the

 certificate.

 ------- Example 3: View document encryption certificates -------

 PS C:\> cd Cert:\CurrentUser\My

 PS Cert:\CurrentUser\My> Get-ChildItem -DocumentEncryptionCert

 To view document encryption certificates in the certificate provider, you can

 add the DocumentEncryptionCert dynamic parameter of Get-ChildItem

 (../Microsoft.PowerShell.Management/Get-ChildItem.md), available only when the

 certificate provider is loaded.

REMARKS

 To see the examples, type: "get-help Protect-CmsMessage -examples".

 For more information, type: "get-help Protect-CmsMessage -detailed".

 For technical information, type: "get-help Protect-CmsMessage -full".

 For online help, type: "get-help Protect-CmsMessage -online"

Page 5/5

