
PowerShell Get-Help on command 'New-Variable'

PS C:\Users\wahid> Get-Help New-Variable

NAME

 New-Variable

SYNOPSIS

 Creates a new variable.

SYNTAX

 New-Variable [-Name] <System.String> [[-Value] <System.Object>] [-Description

 <System.String>] [-Force] [-Option {None | ReadOnly | Constant | Private |

 AllScope | Unspecified}] [-PassThru] [-Scope <System.String>] [-Visibility

 {Public | Private}] [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `New-Variable` cmdlet creates a new variable in PowerShell. You can assign

 a value to the variable while creating it or assign or change the value after

 it is created.

 You can use the parameters of `New-Variable` to set the properties of the

 variable, set the scope of a variable, and determine whether variables are
Page 1/8

 public or private.

 Typically, you create a new variable by typing the variable name and its

 value, such as `$Var = 3`, but you can use the `New-Variable` cmdlet to use

 its parameters.

PARAMETERS

 -Description <System.String>

 Specifies a description of the variable.

 -Force <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet creates a variable with the same name as an

 existing read-only variable.

 By default, you can overwrite a variable unless the variable has an option

 value of `ReadOnly` or `Constant`. For more information, see the Option

 parameter.

 -Name <System.String>

 Specifies a name for the new variable.

 -Option <System.Management.Automation.ScopedItemOptions>

 Specifies the value of the Options property of the variable. The

 acceptable values for this parameter are:

 - `None` - Sets no options. `None` is the default.

 - `ReadOnly` - Can be deleted. Cannot be changed, except by using the

 Force parameter. - `Private` - The variable is available only in the

 current scope.

 - `AllScope` - The variable is copied to any new scopes that are created. Page 2/8

 - `Constant` - Cannot be deleted or changed. `Constant` is valid only when

 you are creating a

 variable. You cannot change the options of an existing variable to

 `Constant`.

 These values are defined as a flag-based enumeration. You can combine

 multiple values together to set multiple flags using this parameter. The

 values can be passed to the Option parameter as an array of values or as a

 comma-separated string of those values. The cmdlet will combine the values

 using a binary-OR operation. Passing values as an array is the simplest

 option and also allows you to use tab-completion on the values.

 To see the Options property of all variables in the session, type

 `Get-Variable | Format-Table -Property name, options -AutoSize`.

 -PassThru <System.Management.Automation.SwitchParameter>

 Returns an object representing the item with which you are working. By

 default, this cmdlet does not generate any output.

 -Scope <System.String>

 Specifies the scope of the new variable. The acceptable values for this

 parameter are:

 - `Global` - Variables created in the global scope are accessible

 everywhere in a PowerShell process. - `Local` - The local scope refers

 to the current scope, this can be any scope depending on the context.

 `Local` is the default scope when the scope parameter is not specified. -

 `Script` - Variables created in the script scope are accessible only

 within the script file or module they are created in. - A number

 relative to the current scope (0 through the number of scopes, where 0 is

 the current scope, 1 is its parent, 2 the parent of the parent scope, Page 3/8

 and so on). Negative numbers cannot be used.

 > [!NOTE] > The parameter also accepts the value of `Private`. `Private`

 is not actually a scope but an > optional setting for a variable. However,

 using the `Private` value with this cmdlet does not > change the

 visibility of the variable. For more information, see > about_Scopes

 (../Microsoft.PowerShell.Core/About/about_Scopes.md).

 -Value <System.Object>

 Specifies the initial value of the variable.

 -Visibility <System.Management.Automation.SessionStateEntryVisibility>

 Determines whether the variable is visible outside of the session in which

 it was created. This parameter is designed for use in scripts and commands

 that will be delivered to other users. The acceptable values for this

 parameter are:

 - `Public` - The variable is visible. `Public` is the default.

 - `Private` - The variable is not visible.

 When a variable is private, it does not appear in lists of variables, such

 as those returned by `Get-Variable`, or in displays of the `Variable:`

 drive. Commands to read or change the value of a private variable return

 an error. However, the user can run commands that use a private variable

 if the commands were written in the session in which the variable was

 defined.

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 Page 4/8

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ----------------- Example 1: Create a variable -----------------

 New-Variable days

 This command creates a new variable named days. You are not required to type

 the Name parameter.

 ------ Example 2: Create a variable and assign it a value ------

 New-Variable -Name "zipcode" -Value 98033

 This command creates a variable named zipcode and assigns it the value 98033.

 ---- Example 3: Create a variable with the ReadOnly option ----

 PS C:\> New-Variable -Name Max -Value 256 -Option ReadOnly

 PS C:\> New-Variable -Name max -Value 1024

 New-Variable : A variable with name 'max' already exists.

 At line:1 char:1

 + New-Variable -Name max -Value 1024

 + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : ResourceExists: (max:String) [New-Variable],

 SessionStateException

 + FullyQualifiedErrorId :

 VariableAlreadyExists,Microsoft.PowerShell.Commands.NewVariableCommand Page 5/8

 PS C:\> New-Variable -Name max -Value 1024 -Force

 This example shows how to use the `ReadOnly` option of `New-Variable` to

 protect a variable from being overwritten.

 The first command creates a new variable named Max and sets its value to 256.

 It uses the Option parameter with a value of `ReadOnly`.

 The second command tries to create a second variable with the same name. This

 command returns an error, because the read-only option is set on the variable.

 The third command uses the Force parameter to override the read-only

 protection on the variable. In this case, the command to create a new variable

 with the same name succeeds.

 ------- Example 4: Assign multiple options to a variable -------

 New-Variable -Name 'TestVariable' -Value 'Test Value' -Option AllScope,Constant

 This example creates a variable and assigns the `AllScope` and `Constant`

 options so the variable will be available in the current scope and any new

 scopes created and cannot be changed or deleted.

 ------------- Example 5: Create a private variable -------------

 PS C:\> New-Variable -Name counter -Visibility Private

 #Effect of private variable in a module.

 PS C:\> Get-Variable c*

 Name Value

 ---- -----

 Culture en-US Page 6/8

 ConsoleFileName

 ConfirmPreference High

 CommandLineParameters {}

 PS C:\> $counter

 "Cannot access the variable '$counter' because it is a private variable"

 At line:1 char:1

 + $counter

 + ~~~~~~~~

 + CategoryInfo : PermissionDenied: (counter:String) [],

 SessionStateException

 + FullyQualifiedErrorId : VariableIsPrivate

 PS C:\> Get-Counter

 Name Value

 ---- -----

 Counter1 3.1415

 ...

 The sample output shows the behavior of a private variable. The user who has

 loaded the module cannot view or change the value of the Counter variable, but

 the Counter variable can be read and changed by the commands in the module.

 ---------- Example 6: Create a variable with a space ----------

 PS C:\> New-Variable -Name 'with space' -Value 'abc123xyz'

 PS C:\> Get-Variable -Name 'with space'

 Name Value

 ---- -----

 with space abc123xyz

 PS C:\> ${with space} Page 7/8

 abc123xyz

REMARKS

 To see the examples, type: "get-help New-Variable -examples".

 For more information, type: "get-help New-Variable -detailed".

 For technical information, type: "get-help New-Variable -full".

 For online help, type: "get-help New-Variable -online"

Page 8/8

