
PowerShell Get-Help on command 'It'

PS C:\Users\wahid> Get-Help It

NAME

 It

SYNOPSIS

 Validates the results of a test inside of a Describe block.

SYNTAX

 It [-name] <String> [[-test] <ScriptBlock>] [-TestCases <IDictionary[]>]

 [<CommonParameters>]

 It [-name] <String> [[-test] <ScriptBlock>] [-TestCases <IDictionary[]>]

 [-Pending] [<CommonParameters>]

 It [-name] <String> [[-test] <ScriptBlock>] [-TestCases <IDictionary[]>]

 [-Skip] [<CommonParameters>]

DESCRIPTION

 The It command is intended to be used inside of a Describe or Context Block.

 If you are familiar with the AAA pattern (Arrange-Act-Assert), the body of
Page 1/5

 the It block is the appropriate location for an assert. The convention is to

 assert a single expectation for each It block. The code inside of the It block

 should throw a terminating error if the expectation of the test is not met and

 thus cause the test to fail. The name of the It block should expressively state

 the expectation of the test.

 In addition to using your own logic to test expectations and throw exceptions,

 you may also use Pester's Should command to perform assertions in plain

 language.

PARAMETERS

 -name <String>

 An expressive phsae describing the expected test outcome.

 -test <ScriptBlock>

 The script block that should throw an exception if the

 expectation of the test is not met.If you are following the

 AAA pattern (Arrange-Act-Assert), this typically holds the

 Assert.

 -TestCases <IDictionary[]>

 Optional array of hashtable (or any IDictionary) objects. If this

 parameter is used,

 Pester will call the test script block once for each table in the

 TestCases array,

 splatting the dictionary to the test script block as input. If you want

 the name of

 the test to appear differently for each test case, you can embed tokens

 into the Name

 parameter with the syntax 'Adds numbers <A> and ' (assuming you have

 keys named A and B

 in your TestCases hashtables.) Page 2/5

 -Pending [<SwitchParameter>]

 Use this parameter to explicitly mark the test as work-in-progress/not

 implemented/pending when you

 need to distinguish a test that fails because it is not finished yet from

 a tests

 that fail as a result of changes being made in the code base. An empty

 test, that is a

 test that contains nothing except whitespace or comments is marked as

 Pending by default.

 -Skip [<SwitchParameter>]

 Use this parameter to explicitly mark the test to be skipped. This is

 preferable to temporarily

 commenting out a test, because the test remains listed in the output. Use

 the Strict parameter

 of Invoke-Pester to force all skipped tests to fail.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------------------------- EXAMPLE 1 --------------------------

 PS C:\>function Add-Numbers($a, $b) {

 return $a + $b

 }

 Describe "Add-Numbers" {

 It "adds positive numbers" { Page 3/5

 $sum = Add-Numbers 2 3

 $sum | Should Be 5

 }

 It "adds negative numbers" {

 $sum = Add-Numbers (-2) (-2)

 $sum | Should Be (-4)

 }

 It "adds one negative number to positive number" {

 $sum = Add-Numbers (-2) 2

 $sum | Should Be 0

 }

 It "concatenates strings if given strings" {

 $sum = Add-Numbers two three

 $sum | Should Be "twothree"

 }

 }

 -------------------------- EXAMPLE 2 --------------------------

 PS C:\>function Add-Numbers($a, $b) {

 return $a + $b

 }

 Describe "Add-Numbers" {

 $testCases = @(

 @{ a = 2; b = 3; expectedResult = 5 } Page 4/5

 @{ a = -2; b = -2; expectedResult = -4 }

 @{ a = -2; b = 2; expectedResult = 0 }

 @{ a = 'two'; b = 'three'; expectedResult = 'twothree' }

)

 It 'Correctly adds <a> and to get <expectedResult>' -TestCases

 $testCases {

 param ($a, $b, $expectedResult)

 $sum = Add-Numbers $a $b

 $sum | Should Be $expectedResult

 }

 }

REMARKS

 To see the examples, type: "get-help It -examples".

 For more information, type: "get-help It -detailed".

 For technical information, type: "get-help It -full".

 For online help, type: "get-help It -online"

Page 5/5

