
PowerShell Get-Help on command 'Invoke-WebRequest'

PS C:\Users\wahid> Get-Help Invoke-WebRequest

NAME

 Invoke-WebRequest

SYNOPSIS

 Gets content from a web page on the internet.

SYNTAX

 Invoke-WebRequest [-Uri] <System.Uri> [-Body <System.Object>] [-Certificate

 <System.Security.Cryptography.X509Certificates.X509Certificate>]

 [-CertificateThumbprint <System.String>] [-ContentType <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-DisableKeepAlive]

 [-Headers <System.Collections.IDictionary>] [-InFile <System.String>]

 [-MaximumRedirection <System.Int32>] [-Method {Default | Get | Head | Post |

 Put | Delete | Trace | Options | Merge | Patch}] [-OutFile <System.String>]

 [-PassThru] [-Proxy <System.Uri>] [-ProxyCredential

 <System.Management.Automation.PSCredential>] [-ProxyUseDefaultCredentials]

 [-SessionVariable <System.String>] [-TimeoutSec <System.Int32>]

 [-TransferEncoding {chunked | compress | deflate | gzip | identity}]

 [-UseBasicParsing] [-UseDefaultCredentials] [-UserAgent <System.String>]

 [-WebSession <Microsoft.PowerShell.Commands.WebRequestSession>]
Page 1/14

 [<CommonParameters>]

DESCRIPTION

 The `Invoke-WebRequest` cmdlet sends HTTP, HTTPS, FTP, and FILE requests to a

 web page or web service. It parses the response and returns collections of

 forms, links, images, and other significant HTML elements.

 This cmdlet was introduced in Windows PowerShell 3.0.

 > [!NOTE] > By default, script code in the web page may be run when the page

 is being parsed to populate the > `ParsedHtml` property. Use the

 `-UseBasicParsing` switch to suppress this.

 > [!IMPORTANT] > The examples in this article reference hosts in the

 `contoso.com` domain. This is a fictitious > domain used by Microsoft for

 examples. The examples are designed to show how to use the cmdlets. > However,

 since the `contoso.com` sites don't exist, the examples don't work. Adapt the

 examples > to hosts in your environment.

PARAMETERS

 -Body <System.Object>

 Specifies the body of the request. The body is the content of the request

 that follows the headers. You can also pipe a body value to

 `Invoke-WebRequest`.

 The Body parameter can be used to specify a list of query parameters or

 specify the content of the response.

 When the input is a GET request and the body is an IDictionary (typically,

 a hash table), the body is added to the URI as query parameters. For other

 request types (such as POST), the body is set as the value of the request Page 2/14

 body in the standard `name=value` format.

 When the body is a form, or it is the output of an `Invoke-WebRequest`

 call, PowerShell sets the request content to the form fields. For example:

 `$r = Invoke-WebRequest https://website.com/login.aspx` `$r.Forms[0].Name

 = "MyName"` `$r.Forms[0].Password = "MyPassword"` `Invoke-RestMethod

 https://website.com/service.aspx -Body $r`

 - or -

 `Invoke-RestMethod https://website.com/service.aspx -Body $r.Forms[0]`

 -Certificate <System.Security.Cryptography.X509Certificates.X509Certificate>

 Specifies the client certificate that's used for a secure web request.

 Enter a variable that contains a certificate or a command or expression

 that gets the certificate.

 To find a certificate, use `Get-PfxCertificate` or use the `Get-ChildItem`

 cmdlet in the Certificate (`Cert:`) drive. If the certificate isn't valid

 or doesn't have sufficient authority, the command fails.

 -CertificateThumbprint <System.String>

 Specifies the digital public key certificate (X509) of a user account that

 has permission to send the request. Enter the certificate thumbprint of

 the certificate.

 Certificates are used in client certificate-based authentication.

 Certificates can only be mapped only to local user accounts, not domain

 accounts.

 To see the certificate thumbprint, use the `Get-Item` or `Get-ChildItem`

 command to find the certificate in `Cert:\CurrentUser\My`. Page 3/14

 -ContentType <System.String>

 Specifies the content type of the web request.

 If this parameter is omitted and the request method is POST,

 `Invoke-WebRequest` sets the content type to

 `application/x-www-form-urlencoded`. Otherwise, the content type isn't

 specified in the call.

 -Credential <System.Management.Automation.PSCredential>

 Specifies a user account that has permission to send the request. The

 default is the current user.

 Type a user name, such as User01 or Domain01\User01 , or enter a

 PSCredential object generated by the `Get-Credential` cmdlet.

 Credentials are stored in a PSCredential

 (/dotnet/api/system.management.automation.pscredential)object and the

 password is stored as a SecureString

 (/dotnet/api/system.security.securestring).

 > [!NOTE] > For more information about SecureString data protection, see >

 How secure is SecureString?

 (/dotnet/api/system.security.securestring#how-secure-is-securestring).

 -DisableKeepAlive <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet sets the KeepAlive value in the HTTP header to

 False . By default, KeepAlive is True . KeepAlive establishes a persistent

 connection to the server to facilitate subsequent requests.

 -Headers <System.Collections.IDictionary>

 Specifies the headers of the web request. Enter a hash table or dictionary.

 Page 4/14

 To set UserAgent headers, use the UserAgent parameter. You cannot use this

 parameter to specify UserAgent or cookie headers.

 -InFile <System.String>

 Gets the content of the web request from a file.

 Enter a path and file name. If you omit the path, the default is the

 current location.

 -MaximumRedirection <System.Int32>

 Specifies how many times PowerShell redirects a connection to an alternate

 Uniform Resource Identifier (URI) before the connection fails. The default

 value is 5. A value of 0 (zero) prevents all redirection.

 -Method <Microsoft.PowerShell.Commands.WebRequestMethod>

 Specifies the method used for the web request. The acceptable values for

 this parameter are:

 - `Default`

 - `Delete`

 - `Get`

 - `Head`

 - `Merge`

 - `Options`

 - `Patch`

 - `Post` Page 5/14

 - `Put`

 - `Trace`

 -OutFile <System.String>

 Specifies the output file for which this cmdlet saves the response body.

 Enter a path and file name. If you omit the path, the default is the

 current location.

 By default, `Invoke-WebRequest` returns the results to the pipeline. To

 send the results to a file and to the pipeline, use the Passthru parameter.

 -PassThru <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet returns the results, in addition to writing them

 to a file. This parameter is valid only when the OutFile parameter is also

 used in the command.

 -Proxy <System.Uri>

 Specifies a proxy server for the request, rather than connecting directly

 to the Internet resource. Enter the URI of a network proxy server.

 -ProxyCredential <System.Management.Automation.PSCredential>

 Specifies a user account that has permission to use the proxy server

 specified by the Proxy parameter. The default is the current user.

 Type a user name, such as `User01` or `Domain01\User01`, or enter a

 PSCredential object, such as one generated by the `Get-Credential` cmdlet.

 This parameter is valid only when the Proxy parameter is also used in the

 command. You can't use the ProxyCredential and ProxyUseDefaultCredentials

 parameters in the same command.

 Page 6/14

 -ProxyUseDefaultCredentials <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet uses the credentials of the current user to

 access the proxy server that is specified by the Proxy parameter.

 This parameter is valid only when the Proxy parameter is also used in the

 command. You can't use the ProxyCredential and ProxyUseDefaultCredentials

 parameters in the same command.

 -SessionVariable <System.String>

 Specifies a variable for which this cmdlet creates a web request session

 and saves it in the value. Enter a variable name without the dollar sign

 (`$`) symbol.

 When you specify a session variable, `Invoke-WebRequest` creates a web

 request session object and assigns it to a variable with the specified

 name in your PowerShell session. You can use the variable in your session

 as soon as the command completes.

 Unlike a remote session, the web request session isn't a persistent

 connection. It's an object that contains information about the connection

 and the request, including cookies, credentials, the maximum redirection

 value, and the user agent string. You can use it to share state and data

 among web requests.

 To use the web request session in subsequent web requests, specify the

 session variable in the value of the WebSession parameter. PowerShell uses

 the data in the web request session object when establishing the new

 connection. To override a value in the web request session, use a cmdlet

 parameter, such as UserAgent or Credential . Parameter values take

 precedence over values in the web request session.

 You can't use the SessionVariable and WebSession parameters in the same

 command. Page 7/14

 -TimeoutSec <System.Int32>

 Specifies how long the request can be pending before it times out. Enter a

 value in seconds. The default value, 0, specifies an indefinite time-out.

 A Domain Name System (DNS) query can take up to 15 seconds to return or

 time out. If your request contains a host name that requires resolution,

 and you set TimeoutSec to a value greater than zero, but less than 15

 seconds, it can take 15 seconds or more before a WebException is thrown,

 and your request times out.

 -TransferEncoding <System.String>

 Specifies a value for the transfer-encoding HTTP response header. The

 acceptable values for this parameter are:

 - `Chunked`

 - `Compress`

 - `Deflate`

 - `GZip`

 - `Identity`

 -Uri <System.Uri>

 Specifies the Uniform Resource Identifier (URI) of the Internet resource

 to which the web request is sent. Enter a URI. This parameter supports

 HTTP, HTTPS, FTP, and FILE values.

 This parameter is required. The parameter name Uri is optional.

 -UseBasicParsing <System.Management.Automation.SwitchParameter> Page 8/14

 Indicates that the cmdlet uses the response object for HTML content

 without Document Object Model (DOM) parsing. This parameter is required

 when Internet Explorer is not installed on the computers, such as on a

 Server Core installation of a Windows Server operating system.

 -UseDefaultCredentials <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet uses the credentials of the current user to send

 the web request.

 -UserAgent <System.String>

 Specifies a user agent string for the web request. The default user agent

 is similar to `Mozilla/5.0 (Windows NT; Windows NT 6.1; en-US)

 WindowsPowerShell/3.0` with slight variations for each operating system

 and platform.

 To test a website with the standard user agent string that is used by most

 Internet browsers, use the properties of the PSUserAgent

 (/dotnet/api/microsoft.powershell.commands.psuseragent)class, such as

 Chrome, FireFox, InternetExplorer, Opera, and Safari. For example, the

 following command uses the user agent string for Internet Explorer:

 `Invoke-WebRequest -Uri https://website.com/ -UserAgent

 ([Microsoft.PowerShell.Commands.PSUserAgent]::InternetExplorer)`

 -WebSession <Microsoft.PowerShell.Commands.WebRequestSession>

 Specifies a web request session. Enter the variable name, including the

 dollar sign (`$`).

 To override a value in the web request session, use a cmdlet parameter,

 such as UserAgent or Credential . Parameter values take precedence over

 values in the web request session.

 Unlike a remote session, the web request session is not a persistent

 connection. It is an object that contains information about the connection Page 9/14

 and the request, including cookies, credentials, the maximum redirection

 value, and the user agent string. You can use it to share state and data

 among web requests.

 To create a web request session, enter a variable name, without a dollar

 sign, in the value of the SessionVariable parameter of an

 `Invoke-WebRequest` command. `Invoke-WebRequest` creates the session and

 saves it in the variable. In subsequent commands, use the variable as the

 value of the WebSession parameter.

 You can't use the SessionVariable and WebSession parameters in the same

 command.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ---------------- Example 1: Send a web request ----------------

 $Response = Invoke-WebRequest -UseBasicParsing -URI

 https://www.bing.com?q=how+many+feet+in+a+mile

 $Response.InputFields |

 Where-Object name -like "* Value" |

 Select-Object name, value

 name value

 ---- -----

 From Value 1

 To Value 5280

 The data returned by `Invoke-WebRequest` is stored in the `$Response` Page 10/14

 variable. The InputFields property of the response contains the form fields.

 `Where-Object` is used to filter the form fields to those where the name

 property is like "* Value". The filtered results are piped to `Select-Object`

 to select the name and value properties.

 ------------ Example 2: Use a stateful web service ------------

 $R = Invoke-WebRequest https://www.facebook.com/login.php -SessionVariable fb

 # This command stores the first form in the Forms property of the $R variable

 in the $Form variable.

 $Form = $R.Forms[0]

 # This command shows the fields available in the Form.

 $Form.fields

 Key Value

 --- -----

 ...

 email

 pass

 ...

 # These commands populate the username and password of the respective Form

 fields.

 $Form.Fields["email"]="User01@Fabrikam.com"

 $Form.Fields["pass"]="P@ssw0rd"

 # This command creates the Uri that will be used to log in to facebook.

 # The value of the Uri parameter is the value of the Action property of the

 form.

 $Uri = "https://www.facebook.com" + $Form.Action

 # Now the Invoke-WebRequest cmdlet is used to sign into the Facebook web

 service.

 # The WebRequestSession object in the $FB variable is passed as the value of

 the WebSession parameter.

 # The value of the Body parameter is the hash table in the Fields property of Page 11/14

 the form.

 # The value of the *Method* parameter is POST. The command saves the output in

 the $R variable.

 $R = Invoke-WebRequest -Uri $Uri -WebSession $FB -Method POST -Body

 $Form.Fields

 $R.StatusDescription

 The first command uses the `Invoke-WebRequest` cmdlet to send a sign-in

 request. The command specifies a value of "FB" for the value of the

 SessionVariable parameter, and saves the result in the `$R` variable. When the

 command completes, the `$R` variable contains an HtmlWebResponseObject and the

 `$FB` variable contains a WebRequestSession object.

 After the `Invoke-WebRequest` cmdlet signs in to facebook, the

 StatusDescription property of the web response object in the `$R` variable

 indicates that the user is signed in successfully.

 ------------- Example 3: Get links from a web page -------------

 (Invoke-WebRequest -Uri

 "https://devblogs.microsoft.com/powershell/").Links.Href

 The `Invoke-WebRequest` cmdlet gets the web page content. Then the Links

 property of the returned HtmlWebResponseObject is used to display the Href

 property of each link.

 - Example 4: Catch non success messages from Invoke-WebRequest -

 try

 {

 $Response = Invoke-WebRequest -Uri "www.microsoft.com/unkownhost"

 # This will only execute if the Invoke-WebRequest is successful.

 $StatusCode = $Response.StatusCode

 }

 catch Page 12/14

 {

 $StatusCode = $_.Exception.Response.StatusCode.value__

 }

 $StatusCode

 404

 The terminating error is caught by the `catch` block, which retrieves the

 StatusCode from the Exception object.

 ----- Example 8: Download multiple files at the same time -----

 $baseUri = 'https://github.com/PowerShell/PowerShell/releases/download'

 $files = @(

 @{

 Uri =

 "$baseUri/v7.3.0-preview.5/PowerShell-7.3.0-preview.5-win-x64.msi"

 OutFile = 'PowerShell-7.3.0-preview.5-win-x64.msi'

 },

 @{

 Uri =

 "$baseUri/v7.3.0-preview.5/PowerShell-7.3.0-preview.5-win-x64.zip"

 OutFile = 'PowerShell-7.3.0-preview.5-win-x64.zip'

 },

 @{

 Uri = "$baseUri/v7.2.5/PowerShell-7.2.5-win-x64.msi"

 OutFile = 'PowerShell-7.2.5-win-x64.msi'

 },

 @{

 Uri = "$baseUri/v7.2.5/PowerShell-7.2.5-win-x64.zip"

 OutFile = 'PowerShell-7.2.5-win-x64.zip'

 }

)

 Page 13/14

 $jobs = @()

 foreach ($file in $files) {

 $jobs += Start-ThreadJob -Name $file.OutFile -ScriptBlock {

 $params = $using:file

 Invoke-WebRequest @params

 }

 }

 Write-Host "Downloads started..."

 Wait-Job -Job $jobs

 foreach ($job in $jobs) {

 Receive-Job -Job $job

 }

 > [!NOTE] > To use the `Start-ThreadJob` cmdlet you must install the ThreadJob

 module from the PowerShell > Gallery.

REMARKS

 To see the examples, type: "get-help Invoke-WebRequest -examples".

 For more information, type: "get-help Invoke-WebRequest -detailed".

 For technical information, type: "get-help Invoke-WebRequest -full".

 For online help, type: "get-help Invoke-WebRequest -online"

Page 14/14

