
PowerShell Get-Help on command 'Invoke-Pester'

PS C:\Users\wahid> Get-Help Invoke-Pester

NAME

 Invoke-Pester

SYNOPSIS

 Invokes Pester to run all tests (files containing *.Tests.ps1) recursively

 under the Path

SYNTAX

 Invoke-Pester [[-Script] <Object[]>] [[-TestName] <String[]>] [[-EnableExit]]

 [[-OutputXml] <String>] [[-Tag] <String[]>] [-ExcludeTag <String[]>]

 [-PassThru] [-CodeCoverage <Object[]>] [-Strict] [-Quiet] [-PesterOption

 <Object>] [<CommonParameters>]

 Invoke-Pester [[-Script] <Object[]>] [[-TestName] <String[]>] [[-EnableExit]]

 [[-Tag] <String[]>] [-ExcludeTag <String[]>] [-PassThru] [-CodeCoverage

 <Object[]>] [-Strict] -OutputFile <String> -OutputFormat <String> [-Quiet]

 [-PesterOption <Object>] [<CommonParameters>]

DESCRIPTION
Page 1/8

 Upon calling Invoke-Pester, all files that have a name containing

 "*.Tests.ps1" will have the tests defined in their Describe blocks

 executed. Invoke-Pester begins at the location of Path and

 runs recursively through each sub directory looking for

 "*.Tests.ps1" files containing tests. If a TestName is provided,

 Invoke-Pester will only run tests that have a describe block with a

 matching name. By default, Invoke-Pester will end the test run with a

 simple report of the number of tests passed and failed output to the

 console. One may want pester to "fail a build" in the event that any

 tests fail. To accomodate this, Invoke-Pester will return an exit

 code equal to the number of failed tests if the EnableExit switch is

 set. Invoke-Pester will also write a NUnit style log of test results

 if the OutputXml parameter is provided. In these cases, Invoke-Pester

 will write the result log to the path provided in the OutputXml

 parameter.

 Optionally, Pester can generate a report of how much code is covered

 by the tests, and information about any commands which were not

 executed.

PARAMETERS

 -Script <Object[]>

 This parameter indicates which test scripts should be run.

 This parameter may be passed simple strings (wildcards are allowed), or

 hashtables containing Path, Arguments and Parameters keys.

 If hashtables are used, the Parameters key must refer to a hashtable, and

 the Arguments key must refer to an array; these will be splatted to the

 test script(s) indicated in the Path key.

 Note: If the path contains any wildcards, or if it refers to a directory,

 then Pester will search for and execute all test scripts named *.Tests.ps1

 in the target path; the search is recursive. If the path contains no Page 2/8

 wildcards and refers to a file, Pester will just try to execute that file

 regardless of its name.

 Aliased to 'Path' and 'relative_path' for backwards compatibility.

 -TestName <String[]>

 Informs Invoke-Pester to only run Describe blocks that match this name.

 -EnableExit [<SwitchParameter>]

 Will cause Invoke-Pester to exit with a exit code equal to the number of

 failed tests once all tests have been run. Use this to "fail" a build when

 any tests fail.

 -OutputXml <String>

 The path where Invoke-Pester will save a NUnit formatted test results log

 file. If this path is not provided, no log will be generated.

 -Tag <String[]>

 Informs Invoke-Pester to only run Describe blocks tagged with the tags

 specified. Aliased 'Tags' for backwards compatibility.

 -ExcludeTag <String[]>

 Informs Invoke-Pester to not run blocks tagged with the tags specified.

 -PassThru [<SwitchParameter>]

 Returns a Pester result object containing the information about the whole

 test run, and each test.

 -CodeCoverage <Object[]>

 Instructs Pester to generate a code coverage report in addition to running

 tests. You may pass either hashtables or strings to this parameter.

 If strings are used, they must be paths (wildcards allowed) to source

 files, and all commands in the files are analyzed for code coverage. Page 3/8

 By passing hashtables instead, you can limit the analysis to specific

 lines or functions within a file.

 Hashtables must contain a Path key (which can be abbreviated to just "P"),

 and may contain Function (or "F"), StartLine (or "S"), and EndLine ("E")

 keys to narrow down the commands to be analyzed.

 If Function is specified, StartLine and EndLine are ignored.

 If only StartLine is defined, the entire script file starting with

 StartLine is analyzed.

 If only EndLine is present, all lines in the script file up to and

 including EndLine are analyzed.

 Both Function and Path (as well as simple strings passed instead of

 hashtables) may contain wildcards.

 -Strict [<SwitchParameter>]

 Makes Pending and Skipped tests to Failed tests. Useful for continuous

 integration where you need to make sure all tests passed.

 -OutputFile <String>

 -OutputFormat <String>

 -Quiet [<SwitchParameter>]

 Disables the output Pester writes to screen. No other output is generated

 unless you specify PassThru, or one of the Output parameters.

 -PesterOption <Object>

 Sets advanced options for the test execution. Enter a PesterOption object,

 such as one that you create by using the New-PesterOption cmdlet, or a

 hash table in which the keys are option names and the values are option

 values.

 For more information on the options available, see the help for

 New-PesterOption.

 Page 4/8

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------------------------- EXAMPLE 1 --------------------------

 PS C:\>Invoke-Pester

 This will find all *.Tests.ps1 files and run their tests. No exit code will be

 returned and no log file will be saved.

 -------------------------- EXAMPLE 2 --------------------------

 PS C:\>Invoke-Pester -Script ./tests/Utils*

 This will run all tests in files under ./Tests that begin with Utils and

 alsocontains .Tests.

 -------------------------- EXAMPLE 3 --------------------------

 PS C:\>Invoke-Pester -Script @{ Path = './tests/Utils*'; Parameters = @{

 NamedParameter = 'Passed By Name' }; Arguments = @('Passed by position') }

 Executes the same tests as in Example 1, but will run them with the equivalent

 of the following command line: & $testScriptPath -NamedParameter 'Passed By Page 5/8

 Name' 'Passed by position'

 -------------------------- EXAMPLE 4 --------------------------

 PS C:\>Invoke-Pester -TestName "Add Numbers"

 This will only run the Describe block named "Add Numbers"

 -------------------------- EXAMPLE 5 --------------------------

 PS C:\>Invoke-Pester -EnableExit -OutputXml "./artifacts/TestResults.xml"

 This runs all tests from the current directory downwards and writes the

 results according to the NUnit schema to artifacts/TestResults.xml just below

 the current directory. The test run will return an exit code equal to the

 number of test failures.

 -------------------------- EXAMPLE 6 --------------------------

 PS C:\>Invoke-Pester -EnableExit -OutputFile "./artifacts/TestResults.xml"

 -OutputFormat NUnitxml

 This runs all tests from the current directory downwards and writes the

 results to an output file and NUnitxml output format Page 6/8

 -------------------------- EXAMPLE 7 --------------------------

 PS C:\>Invoke-Pester -CodeCoverage 'ScriptUnderTest.ps1'

 Runs all *.Tests.ps1 scripts in the current directory, and generates a

 coverage report for all commands in the "ScriptUnderTest.ps1" file.

 -------------------------- EXAMPLE 8 --------------------------

 PS C:\>Invoke-Pester -CodeCoverage @{ Path = 'ScriptUnderTest.ps1'; Function =

 'FunctionUnderTest' }

 Runs all *.Tests.ps1 scripts in the current directory, and generates a

 coverage report for all commands in the "FunctionUnderTest" function in the

 "ScriptUnderTest.ps1" file.

 -------------------------- EXAMPLE 9 --------------------------

 PS C:\>Invoke-Pester -CodeCoverage @{ Path = 'ScriptUnderTest.ps1'; StartLine

 = 10; EndLine = 20 }

 Runs all *.Tests.ps1 scripts in the current directory, and generates a

 coverage report for all commands on lines 10 through 20 in the Page 7/8

 "ScriptUnderTest.ps1" file.

REMARKS

 To see the examples, type: "get-help Invoke-Pester -examples".

 For more information, type: "get-help Invoke-Pester -detailed".

 For technical information, type: "get-help Invoke-Pester -full".

 For online help, type: "get-help Invoke-Pester -online"

Page 8/8

