
PowerShell Get-Help on command 'Import-PSSession'

PS C:\Users\wahid> Get-Help Import-PSSession

NAME

 Import-PSSession

SYNOPSIS

 Imports commands from another session into the current session.

SYNTAX

 Import-PSSession [-Session] <System.Management.Automation.Runspaces.PSSession>

 [[-CommandName] <System.String[]>] [[-FormatTypeName] <System.String[]>]

 [-AllowClobber] [-ArgumentList <System.Object[]>] [-Certificate

 <System.Security.Cryptography.X509Certificates.X509Certificate2>]

 [-CommandType {Alias | Function | Filter | Cmdlet | ExternalScript |

 Application | Script | Workflow | Configuration | All}] [-DisableNameChecking]

 [-FullyQualifiedModule <Microsoft.PowerShell.Commands.ModuleSpecification[]>]

 [-Module <System.String[]>] [-Prefix <System.String>] [<CommonParameters>]

DESCRIPTION

 The `Import-PSSession` cmdlet imports commands , such as cmdlets, functions,

 and aliases, from a PSSession on a local or remote computer into the current
Page 1/15

 session. You can import any command that the `Get-Command` cmdlet can find in

 the PSSession.

 Use an `Import-PSSession` command to import commands from a customized shell,

 such as a Microsoft Exchange Server shell, or from a session that includes

 Windows PowerShell modules and snap-ins or other elements that are not in the

 current session.

 To import commands, first use the `New-PSSession` cmdlet to create a

 PSSession. Then, use the `Import-PSSession` cmdlet to import the commands. By

 default, `Import-PSSession` imports all commands except for commands that have

 the same names as commands in the current session. To import all the commands,

 use the AllowClobber parameter.

 You can use imported commands just as you would use any command in the

 session. When you use an imported command, the imported part of the command

 runs implicitly in the session from which it was imported. However, the remote

 operations are handled entirely by Windows PowerShell. You need not even be

 aware of them, except that you must keep the connection to the other session

 (PSSession) open. If you close it, the imported commands are no longer

 available.

 Because imported commands might take longer to run than local commands,

 `Import-PSSession` adds an AsJob parameter to every imported command. This

 parameter allows you to run the command as a Windows PowerShell background

 job. For more information, see about_Jobs

 (../Microsoft.PowerShell.Core/about/about_Jobs.md).

 When you use `Import-PSSession`, Windows PowerShell adds the imported commands

 to a temporary module that exists only in your session and returns an object

 that represents the module. To create a persistent module that you can use in

 future sessions, use the `Export-PSSession` cmdlet.

 Page 2/15

 The `Import-PSSession` cmdlet uses the implicit remoting feature of Windows

 PowerShell. When you import commands into the current session, they run

 implicitly in the original session or in a similar session on the originating

 computer.

 Beginning in Windows PowerShell 3.0, you can use the `Import-Module` cmdlet to

 import modules from a remote session into the current session. This feature

 uses implicit remoting. It is equivalent to using `Import-PSSession` to import

 selected modules from a remote session into the current session.

PARAMETERS

 -AllowClobber <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet imports the specified commands, even if they

 have the same names as commands in the current session.

 If you import a command with the same name as a command in the current

 session, the imported command hides or replaces the original commands. For

 more information, see about_Command_Precedence

 (../Microsoft.PowerShell.Core/about/about_Command_Precedence.md).

 By default, `Import-PSSession` does not import commands that have the same

 name as commands in the current session.

 -ArgumentList <System.Object[]>

 Specifies an array of commands that results from using the specified

 arguments (parameter values).

 For instance, to import the variant of the `Get-Item` command in the

 certificate (Cert:) drive in the PSSession in `$S`, type `Import-PSSession

 -Session $S -Command Get-Item -ArgumentList cert:`.

 -Certificate <System.Security.Cryptography.X509Certificates.X509Certificate2> Page 3/15

 Specifies the client certificate that is used to sign the format files

 (*.Format.ps1xml) or script module files (.psm1) in the temporary module

 that `Import-PSSession` creates.

 Enter a variable that contains a certificate or a command or expression

 that gets the certificate.

 To find a certificate, use the `Get-PfxCertificate` cmdlet or use the

 `Get-ChildItem` cmdlet in the Certificate (Cert:) drive. If the

 certificate is not valid or does not have sufficient authority, the

 command fails.

 -CommandName <System.String[]>

 Specifies commands with the specified names or name patterns. Wildcards

 are permitted. Use CommandName or its alias, Name .

 By default, `Import-PSSession` imports all commands from the session,

 except for commands that have the same names as commands in the current

 session. This prevents imported commands from hiding or replacing commands

 in the session. To import all commands, even those that hide or replace

 other commands, use the AllowClobber parameter.

 If you use the CommandName parameter, the formatting files for the

 commands are not imported unless you use the FormatTypeName parameter.

 Similarly, if you use the FormatTypeName parameter, no commands are

 imported unless you use the CommandName parameter.

 -CommandType <System.Management.Automation.CommandTypes>

 Specifies the type of command objects. The default value is Cmdlet. Use

 CommandType or its alias, Type . The acceptable values for this parameter

 are:

 - `Alias`: The Windows PowerShell aliases in the remote session. Page 4/15

 - `All`: The cmdlets and functions in the remote session.

 - `Application`: All the files other than Windows-PowerShell files in the

 paths that are listed in

 the Path environment variable (`$env:path`) in the remote session,

 including .txt, .exe, and .dll files. - `Cmdlet`: The cmdlets in the

 remote session. "Cmdlet" is the default.

 - `ExternalScript`: The .ps1 files in the paths listed in the Path

 environment variable

 (`$env:path`) in the remote session. - `Filter` and `Function`: The

 Windows PowerShell functions in the remote session.

 - `Script`: The script blocks in the remote session.

 These values are defined as a flag-based enumeration. You can combine

 multiple values together to set multiple flags using this parameter. The

 values can be passed to the CommandType parameter as an array of values or

 as a comma-separated string of those values. The cmdlet will combine the

 values using a binary-OR operation. Passing values as an array is the

 simplest option and also allows you to use tab-completion on the values.

 -DisableNameChecking <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet suppresses the message that warns you when you

 import a cmdlet or function whose name includes an unapproved verb or a

 prohibited character.

 By default, when a module that you import exports cmdlets or functions Page 5/15

 that have unapproved verbs in their names, the Windows PowerShell displays

 the following warning message:

 "WARNING: Some imported command names include unapproved verbs which might

 make them less discoverable. Use the Verbose parameter for more detail or

 type `Get-Verb` to see the list of approved verbs."

 This message is only a warning. The complete module is still imported,

 including the non-conforming commands. Although the message is displayed

 to module users, the naming problem should be fixed by the module author.

 -FormatTypeName <System.String[]>

 Specifies formatting instructions for the specified Microsoft .NET

 Framework types. Enter the type names. Wildcards are permitted.

 The value of this parameter must be the name of a type that is returned by

 a `Get-FormatData` command in the session from which the commands are

 being imported. To get all of the formatting data in the remote session,

 type `*`.

 If the command does not include either the CommandName or FormatTypeName

 parameter, `Import-PSSession` imports formatting instructions for all .NET

 Framework types returned by a `Get-FormatData` command in the remote

 session.

 If you use the FormatTypeName parameter, no commands are imported unless

 you use the CommandName parameter.

 Similarly, if you use the CommandName parameter, the formatting files for

 the commands are not imported unless you use the FormatTypeName parameter.

 -FullyQualifiedModule <Microsoft.PowerShell.Commands.ModuleSpecification[]>

 The value can be a module name, a full module specification, or a path to Page 6/15

 a module file.

 When the value is a path, the path can be fully qualified or relative. A

 relative path is resolved relative to the script that contains the using

 statement.

 When the value is a name or module specification, PowerShell searches the

 PSModulePath for the specified module.

 A module specification is a hashtable that has the following keys.

 - `ModuleName` - Required Specifies the module name. - `GUID` - Optional

 Specifies the GUID of the module. - It's also Required to specify at least

 one of the three below keys. - `ModuleVersion` - Specifies a minimum

 acceptable version of the module. - `MaximumVersion` - Specifies the

 maximum acceptable version of the module. - `RequiredVersion` -

 Specifies an exact, required version of the module. This can't be used

 with the other Version keys.

 You can't specify the FullyQualifiedModule parameter in the same command

 as a Module parameter. The two parameters are mutually exclusive.

 -Module <System.String[]>

 Specifies and array of commands in the Windows PowerShell snap-ins and

 modules. Enter the snap-in and module names. Wildcards are not permitted.

 `Import-PSSession` cannot import providers from a snap-in.

 For more information, see about_PSSnapins

 (../Microsoft.PowerShell.Core/About/about_PSSnapins.md)and about_Modules

 (../Microsoft.PowerShell.Core/About/about_Modules.md).

 -Prefix <System.String> Page 7/15

 Specifies a prefix to the nouns in the names of imported commands.

 Use this parameter to avoid name conflicts that might occur when different

 commands in the session have the same name.

 For instance, if you specify the prefix Remote and then import a

 `Get-Date` cmdlet, the cmdlet is known in the session as `Get-RemoteDate`,

 and it is not confused with the original `Get-Date` cmdlet.

 -Session <System.Management.Automation.Runspaces.PSSession>

 Specifies the PSSession from which the cmdlets are imported. Enter a

 variable that contains a session object or a command that gets a session

 object, such as a `New-PSSession` or `Get-PSSession` command. You can

 specify only one session. This parameter is required.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ------- Example 1: Import all commands from a PSSession -------

 $S = New-PSSession -ComputerName Server01

 Import-PSSession -Session $S

 This command imports all commands from a PSSession on the Server01 computer

 into the current session, except for commands that have the same names as

 commands in the current session.

 Because this command does not use the CommandName parameter, it also imports

 all of the formatting data required for the imported commands.

 -- Example 2: Import commands that end with a specific string -- Page 8/15

 $S = New-PSSession https://ps.testlabs.com/powershell

 Import-PSSession -Session $S -CommandName *-test -FormatTypeName *

 New-Test -Name Test1

 Get-Test test1 | Run-Test

 These commands import the commands with names that end in "-test" from a

 PSSession into the local session, and then they show how to use an imported

 cmdlet.

 The first command uses the `New-PSSession` cmdlet to create a PSSession. It

 saves the PSSession in the `$S` variable.

 The second command uses the `Import-PSSession` cmdlet to import commands from

 the PSSession in `$S` into the current session. It uses the CommandName

 parameter to specify commands with the Test noun and the FormatTypeName

 parameter to import the formatting data for the Test commands.

 The third and fourth commands use the imported commands in the current

 session. Because imported commands are actually added to the current session,

 you use the local syntax to run them. You do not need to use the

 `Invoke-Command` cmdlet to run an imported command.

 ---------- Example 3: Import cmdlets from a PSSession ----------

 $S1 = New-PSSession -ComputerName s1

 $S2 = New-PSSession -ComputerName s2

 Import-PSSession -Session s1 -Type cmdlet -Name New-Test, Get-Test

 -FormatTypeName *

 Import-PSSession -Session s2 -Type Cmdlet -Name Set-Test -FormatTypeName *

 New-Test Test1 | Set-Test -RunType Full

 This example shows that you can use imported cmdlets just as you would use

 local cmdlets. Page 9/15

 These commands import the `New-Test` and `Get-Test` cmdlets from a PSSession

 on the Server01 computer and the `Set-Test` cmdlet from a PSSession on the

 Server02 computer.

 Even though the cmdlets were imported from different PSSessions, you can pipe

 an object from one cmdlet to another without error.

 ---- Example 4: Run an imported command as a background job ----

 $S = New-PSSession -ComputerName Server01

 Import-PSSession -Session $S -CommandName *-test* -FormatTypeName *

 $batch = New-Test -Name Batch -AsJob

 Receive-Job $batch

 This example shows how to run an imported command as a background job.

 Because imported commands might take longer to run than local commands,

 `Import-PSSession` adds an AsJob parameter to every imported command. The

 AsJob parameter lets you run the command as a background job.

 The first command creates a PSSession on the Server01 computer and saves the

 PSSession object in the `$S` variable.

 The second command uses `Import-PSSession` to import the Test cmdlets from the

 PSSession in `$S` into the current session.

 The third command uses the AsJob parameter of the imported `New-Test` cmdlet

 to run a `New-Test` command as a background job. The command saves the job

 object that `New-Test` returns in the `$batch` variable.

 The fourth command uses the `Receive-Job` cmdlet to get the results of the job

 in the `$batch` variable.

 Example 5: Import cmdlets and functions from a Windows PowerShell module Page 10/15

 $S = New-PSSession -ComputerName Server01

 Invoke-Command -Session $S {Import-Module TestManagement}

 Import-PSSession -Session $S -Module TestManagement

 This example shows how to import the cmdlets and functions from a Windows

 PowerShell module on a remote computer into the current session.

 The first command creates a PSSession on the Server01 computer and saves it in

 the `$S` variable.

 The second command uses the `Invoke-Command` cmdlet to run an `Import-Module`

 command in the PSSession in `$S`.

 Typically, the module would be added to all sessions by an `Import-Module`

 command in a Windows PowerShell profile, but profiles are not run in

 PSSessions.

 The third command uses the Module parameter of `Import-PSSession` to import

 the cmdlets and functions in the module into the current session.

 -------- Example 6: Create a module in a temporary file --------

 PS C:\> Import-PSSession $S -CommandName Get-Date, SearchHelp -FormatTypeName

 * -AllowClobber

 Name : tmp_79468106-4e1d-4d90-af97-1154f9317239_tcw1zunz.ttf

 Path : C:\Users\User01\AppData\Local\Temp\tmp_79468106-4e1d-4d90-a

 f97-1154f9317239_tcw1

 zunz.ttf\tmp_79468106-4e1d-4d90-af97-1154f9317239_

 tcw1zunz.ttf.psm1

 Description : Implicit remoting for

 http://server01.corp.fabrikam.com/wsman

 Guid : 79468106-4e1d-4d90-af97-1154f9317239 Page 11/15

 Version : 1.0

 ModuleBase : C:\Users\User01\AppData\Local\Temp\tmp_79468106-4e1d-4d90-a

 f97-1154f9317239_tcw1

 zunz.ttf

 ModuleType : Script

 PrivateData : {ImplicitRemoting}

 AccessMode : ReadWrite

 ExportedAliases : {}

 ExportedCmdlets : {}

 ExportedFunctions : {[Get-Date, Get-Date], [SearchHelp, SearchHelp]}

 ExportedVariables : {}

 NestedModules : {}

 This example shows that `Import-PSSession` creates a module in a temporary

 file on disk. It also shows that all commands are converted into functions

 before they are imported into the current session.

 The command uses the `Import-PSSession` cmdlet to import a `Get-Date` cmdlet

 and a SearchHelp function into the current session.

 The `Import-PSSession` cmdlet returns a PSModuleInfo object that represents

 the temporary module. The value of the Path property shows that

 `Import-PSSession` created a script module (.psm1) file in a temporary

 location. The ExportedFunctions property shows that the `Get-Date` cmdlet and

 the SearchHelp function were both imported as functions.

 Example 7: Run a command that is hidden by an imported command

 PS C:\> Import-PSSession $S -CommandName Get-Date -FormatTypeName *

 -AllowClobber

 PS C:\> Get-Command Get-Date -All

 CommandType Name Definition Page 12/15

 ----------- ---- ----------

 Function Get-Date ...

 Cmdlet Get-Date Get-Date [[-Date] <DateTime>] [-Year <Int32>] [-Month

 <Int32>]

 PS C:\> Get-Date

 09074

 PS C:\> (Get-Command -Type Cmdlet -Name Get-Date).PSSnapin.Name

 Microsoft.PowerShell.Utility

 PS C:\> Microsoft.PowerShell.Utility\Get-Date

 Sunday, March 15, 2009 2:08:26 PM

 This example shows how to run a command that is hidden by an imported command.

 The first command imports a `Get-Date` cmdlet from the PSSession in the `$S`

 variable. Because the current session includes a `Get-Date` cmdlet, the

 AllowClobber parameter is required in the command.

 The second command uses the All parameter of the `Get-Command` cmdlet to get

 all `Get-Date` commands in the current session. The output shows that the

 session includes the original `Get-Date` cmdlet and a `Get-Date` function. The

 `Get-Date` function runs the imported `Get-Date` cmdlet in the PSSession in

 `$S`.

 The third command runs a `Get-Date` command. Because functions take precedence

 over cmdlets, Windows PowerShell runs the imported `Get-Date` function, which

 returns a Julian date.

 The fourth and fifth commands show how to use a qualified name to run a

 command that is hidden by an imported command.

 Page 13/15

 The fourth command gets the name of the Windows PowerShell snap-in that added

 the original `Get-Date` cmdlet to the current session.

 The fifth command uses the snap-in-qualified name of the `Get-Date` cmdlet to

 run a `Get-Date` command.

 For more information about command precedence and hidden commands, see

 about_Command_Precedence

 (../Microsoft.PowerShell.Core/about/about_Command_Precedence.md).

 Example 8: Import commands that have a specific string in their names

 PS C:\> Import-PSSession -Session $S -CommandName **Item** -AllowClobber

 This command imports commands whose names include Item from the PSSession in

 `$S`. Because the command includes the CommandName parameter but not the

 FormatTypeData parameter, only the command is imported.

 Use this command when you are using `Import-PSSession` to run a command on a

 remote computer and you already have the formatting data for the command in

 the current session.

 Example 9: Use the Module parameter to discover which commands were imported

 into the session

 PS C:\> $M = Import-PSSession -Session $S -CommandName *bits* -FormatTypeName

 bits

 PS C:\> Get-Command -Module $M

 CommandType Name

 ----------- ----

 Function Add-BitsFile

 Function Complete-BitsTransfer

 Function Get-BitsTransfer

 Function Remove-BitsTransfer

 Function Resume-BitsTransfer Page 14/15

 Function Set-BitsTransfer

 Function Start-BitsTransfer

 Function Suspend-BitsTransfer

 This command shows how to use the Module parameter of `Get-Command` to find

 out which commands were imported into the session by an `Import-PSSession`

 command.

 The first command uses the `Import-PSSession` cmdlet to import commands whose

 names include "bits" from the PSSession in the `$S` variable. The

 `Import-PSSession` command returns a temporary module, and the command saves

 the module in the `$m` variable.

 The second command uses the `Get-Command` cmdlet to get the commands that are

 exported by the module in the `$M` variable.

 The Module parameter takes a string value, which is designed for the module

 name. However, when you submit a module object, Windows PowerShell uses the

 ToString method on the module object, which returns the module name.

 The `Get-Command` command is the equivalent of `Get-Command $M.Name`".

REMARKS

 To see the examples, type: "get-help Import-PSSession -examples".

 For more information, type: "get-help Import-PSSession -detailed".

 For technical information, type: "get-help Import-PSSession -full".

 For online help, type: "get-help Import-PSSession -online"

Page 15/15

