
PowerShell Get-Help on command 'Import-Counter'

PS C:\Users\wahid> Get-Help Import-Counter

NAME

 Import-Counter

SYNOPSIS

 Imports performance counter log files and creates the objects that represent

 each counter sample in the log.

SYNTAX

 Import-Counter [-Path] <System.String[]> [-Counter <System.String[]>]

 [-EndTime <System.DateTime>] [-MaxSamples <System.Int64>] [-StartTime

 <System.DateTime>] [<CommonParameters>]

 Import-Counter [-Path] <System.String[]> -ListSet <System.String[]>

 [<CommonParameters>]

 Import-Counter [-Path] <System.String[]> [-Summary] [<CommonParameters>]

DESCRIPTION

 The `Import-Counter` cmdlet imports performance counter data from performance
Page 1/9

 counter log files and creates objects for each counter sample in the file. The

 PerformanceCounterSampleSet objects that it creates are identical to the

 objects that `Get-Counter` returns when it collects performance counter data.

 You can import data from comma-separated value (`.csv`), tab-separated value

 (`.tsv`), and binary performance log (`.blg`) performance log files. If you

 are using `.blg` files, you can import up to 32 files in each command. You can

 use the parameters of `Import-Counter` to filter the data that you import.

 Along with the `Get-Counter` and `Export-Counter` cmdlets, this feature lets

 you collect, export, import, combine, filter, manipulate, and re-export

 performance counter data within Windows PowerShell.

PARAMETERS

 -Counter <System.String[]>

 Specifies, as a string array, the performance counters. By default,

 `Import-Counter` imports all data from all counters in the input files.

 Enter one or more counter paths. Wildcards are permitted in the Instance

 part of the path.

 Each counter path has the following format. The `ComputerName` value is

 required in the path. For instance:

 - `\<ComputerName><CounterSet>(<Instance>)<CounterName>`

 For example:

 - `\Server01\Processor(2)\% User Time`

 - `\Server01\Processor(*)\% Processor Time`

 -EndTime <System.DateTime> Page 2/9

 Specifies an end date and time that this cmdlet imports counter data

 between the StartTime and this parameter timestamps. Enter a DateTime

 object, such as one created by the `Get-Date` cmdlet. By default,

 `Import-Counter` imports all counter data in the files specified by the

 Path parameter.

 -ListSet <System.String[]>

 Specifies the performance counter sets that are represented in the

 exported files. Commands with this parameter do not import any data.

 Enter one or more counter set names. Wildcards are permitted. To get all

 counter sets in the file, type `Import-Counter -ListSet *`.

 -MaxSamples <System.Int64>

 Specifies the maximum number of samples of each counter to import. By

 default, `Get-Counter` imports all of the data in the files specified by

 the Path parameter.

 -Path <System.String[]>

 Specifies the file paths of the files to be imported. This parameter is

 required.

 Enter the path and file name of a, `.csv`, `.tsv`, or `.blg` file that you

 exported by using the `Export-Counter` cmdlet. You can specify only one

 `.csv` or `.tsv` file, but you can specify multiple `.blg` files (up to

 32) in each command. You can also pipe file path strings (in quotation

 marks) to `Import-Counter`.

 -StartTime <System.DateTime>

 Specifies the start date and time in which this cmdlet gets counter data.

 Enter a DateTime object, such as one created by the `Get-Date` cmdlet. By

 default, `Import-Counter` imports all counter data in the files specified

 by the Path parameter. Page 3/9

 -Summary <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets a summary of the imported data, instead of

 getting individual counter data samples.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------- Example 1: Import all counter data from a file --------

 $data = Import-Counter -Path ProcessorData.csv

 This command imports all counter data from the `ProcessorData.csv` file into

 the `$data` variable.

 ----- Example 2: Import specific counter data from a file -----

 $i = Import-Counter -Path "ProcessorData.blg" -Counter

 "\\SERVER01\Processor(_Total)\Interrupts/sec"

 This command imports only the "Processor(_total)\Interrupts/sec" counter data

 from the `ProcessorData.blg` file into the `$i` variable.

 Example 3: Select data from a performance counter then export it to a file

 $data = Import-Counter .\ProcessorData.blg

 $data[0].CounterSamples | Format-Table -Property Path

 Path

 \\SERVER01\Processor(_Total)\DPC Rate

 \\SERVER01\Processor(1)\DPC Rate Page 4/9

 \\SERVER01\Processor(0)\DPC Rate

 \\SERVER01\Processor(_Total)\% Idle Time

 \\SERVER01\Processor(1)\% Idle Time

 \\SERVER01\Processor(0)\% Idle Time

 \\SERVER01\Processor(_Total)\% C3 Time

 \\SERVER01\Processor(1)\% C3 Time

 $intCtrs = $Data[0].Countersamples | Where-Object {$_.Path -like

 "*Interrupts/sec"} | ForEach-Object {$_.Path}

 $intCtrs

 \\SERVER01\Processor(_Total)\Interrupts/sec

 \\SERVER01\Processor(1)\Interrupts/sec

 \\SERVER01\Processor(0)\Interrupts/sec

 $i = Import-Counter -Path .\ProcessorData.blg -Counter $intCtrs

 $i | Export-Counter -Path .\Interrupts.csv -Format CSV

 The first command uses `Import-Counter` to import all of the performance

 counter data from the `ProcessorData.blg` files. The command saves the data in

 the `$data` variable.

 The second command displays the counter paths in the `$data` variable. To get

 the display shown in the command output, the example uses the `Format-Table`

 cmdlet to format as a table the counter paths of the first counter in the

 `$data` variable.

 The third command gets the counter paths that end in `Interrupts/sec` and

 saves the paths in the `$intCtrs` variable. It uses the `Where-Object` cmdlet

 to filter the counter paths and the `ForEach-Object` cmdlet to get only the

 value of the Path property of each selected path object.

 The fourth command displays the selected counter paths in the `$intCtrs` Page 5/9

 variable.

 The fifth command uses the `Import-Counter` cmdlet to import the data. It uses

 the `$intCtrs` variable as the value of the Counter parameter to import only

 data for the counter paths in `$intCtrs`.

 The sixth command uses the `Export-Counter` cmdlet to export the data to the

 `Interrupts.csv` file.

 Example 4: Display all counter paths in a group of imported counter sets

 Import-Counter -Path ProcessorData.csv -ListSet *

 CounterSetName : Processor

 MachineName : \\SERVER01

 CounterSetType : MultiInstance

 Description :

 Paths : {\\SERVER01\Processor(*)\DPC Rate,

 \\SERVER01\Processor(*)\% Idle Time, \\SERVER01

 \Processor(*)\% C3 Time, \\SERVER01\Processor(*)\% Interrupt Time...}

 PathsWithInstances : {\\SERVER01\Processor(_Total)\DPC Rate,

 \\SERVER01\Processor(1)\DPC Rate, \\SERVER01

 \Processor(0)\DPC Rate, \\SERVER01\Processor(_Total)\% Idle Time...}

 Counter : {\\SERVER01\Processor(*)\DPC Rate,

 \\SERVER01\Processor(*)\% Idle Time, \\SERVER01

 \Processor(*)\% C3 Time, \\SERVER01\Processor(*)\% Interrupt Time...}

 Import-Counter -Path ProcessorData.csv -ListSet * | ForEach-Object {$_.Paths}

 \\SERVER01\Processor(*)\DPC Rate

 \\SERVER01\Processor(*)\% Idle Time

 \\SERVER01\Processor(*)\% C3 Time

 \\SERVER01\Processor(*)\% Interrupt Time

 \\SERVER01\Processor(*)\% C2 Time Page 6/9

 \\SERVER01\Processor(*)\% User Time

 \\SERVER01\Processor(*)\% C1 Time

 \\SERVER01\Processor(*)\% Processor Time

 \\SERVER01\Processor(*)\C1 Transitions/sec

 \\SERVER01\Processor(*)\% DPC Time

 \\SERVER01\Processor(*)\C2 Transitions/sec

 \\SERVER01\Processor(*)\% Privileged Time

 \\SERVER01\Processor(*)\C3 Transitions/sec

 \\SERVER01\Processor(*)\DPCs Queued/sec

 \\SERVER01\Processor(*)\Interrupts/sec

 The first command uses the ListSet parameter of the `Import-Counter` cmdlet to

 get all of the counter sets that are represented in a counter data file.

 The second command gets all of the counter paths from the list set.

 -- Example 5: Import counter data from a range of timestamps --

 Import-Counter -Path ".\disk.blg" | Format-Table -Property Timestamp

 $start = [datetime]"7/9/2008 3:47:00 PM"; $end = [datetime]"7/9/2008 3:47:59

 PM"

 Import-Counter -Path Disk.blg -StartTime $start -EndTime $end

 The first command lists in a table the timestamps of all of the data in the

 `ProcessorData.blg` file.

 The second command saves particular timestamps in the `$start` and `$end`

 variables. The strings are cast to DateTime objects.

 The third command uses the `Import-Counter` cmdlet to get only counter data

 that has a time stamp between the start and end times (inclusive). The command

 uses the StartTime and EndTime parameters of `Import-Counter` to specify the

 range.

 Example 6: Import a specified number of the oldest samples from a performance Page 7/9

 counter log file

 Import-Counter -Path "Disk.blg" -MaxSamples 5

 (Import-Counter -Path Disk.blg)[-1 .. -5]

 The first command uses the `Import-Counter` cmdlet to import the first

 (oldest) five samples from the `Disk.blg` file. The command uses the

 MaxSamples parameter to limit the import to five counter samples.

 The second command uses array notation and the Windows PowerShell range

 operator (`..`) to get the last five counter samples from the file. These are

 the five newest samples.

 ----- Example 7: Get a summary of counter data from a file -----

 Import-Counter "D:\Samples\Memory.blg" -Summary

 OldestRecord NewestRecord SampleCount

 ------------ ------------ -----------

 7/10/2008 2:59:18 PM 7/10/2008 3:00:27 PM 1000

 This command uses the Summary parameter of the `Import-Counter` cmdlet to get

 a summary of the counter data in the `Memory.blg` file.

 ------- Example 8: Update a performance counter log file -------

 $counters = Import-Counter OldData.blg -ListSet * | ForEach-Object

 {$_.PathsWithInstances}

 Get-Counter -Counter $Counters -MaxSamples 20 | Export-Counter

 C:\Logs\NewData.blg

 The first command uses the ListSet parameter of `Import-Counter` to get the

 counters in `OldData.blg`, an existing counter log file. The command uses a

 pipeline operator (`|`) to send the data to a `ForEach-Object` command that

 gets only the values of the PathsWithInstances property of each object Page 8/9

 The second command gets updated data for the counters in the `$counters`

 variable. It uses the `Get-Counter` cmdlet to get a current sample, and then

 export the results to the `NewData.blg` file.

 Example 9: Import performance log data from multiple files and then save it

 $counters = "D:\test\pdata.blg", "D:\samples\netlog.blg" | Import-Counter

 This command imports performance log data from two logs and saves the data in

 the `$counters` variable. The command uses a pipeline operator to send the

 performance log paths to Import-Counter, which imports the data from the

 specified paths.

 Notice that each path is enclosed in quotation marks and that the paths are

 separated from each other by a comma.

REMARKS

 To see the examples, type: "get-help Import-Counter -examples".

 For more information, type: "get-help Import-Counter -detailed".

 For technical information, type: "get-help Import-Counter -full".

 For online help, type: "get-help Import-Counter -online"

Page 9/9

