
PowerShell Get-Help on command 'Import-Clixml'

PS C:\Users\wahid> Get-Help Import-Clixml

NAME

 Import-Clixml

SYNOPSIS

 Imports a CLIXML file and creates corresponding objects in PowerShell.

SYNTAX

 Import-Clixml [-First <System.UInt64>] [-IncludeTotalCount] -LiteralPath

 <System.String[]> [-Skip <System.UInt64>] [<CommonParameters>]

 Import-Clixml [-Path] <System.String[]> [-First <System.UInt64>]

 [-IncludeTotalCount] [-Skip <System.UInt64>] [<CommonParameters>]

DESCRIPTION

 The `Import-Clixml` cmdlet imports objects that have been serialized into a

 Common Language Infrastructure (CLI) XML file. A valuable use of

 `Import-Clixml` on Windows computers is to import credentials and secure

 strings that were exported as secure XML using `Export-Clixml`. Example #2

 (#example-2-import-a-secure-credential-object)shows how to use `Import-Clixml`
Page 1/5

 to import a secure credential object.

 The CLIXML data is deserialized back into PowerShell objects. However, the

 deserialized objects aren't a live objects. They are a snapshot of the objects

 at the time of serialization. The deserialized objects include properties but

 no methods.

 The TypeNames property contains the original type name prefixed with

 `Deserialized`. Example #3

 (#example-3-inspect-the-typenames-property-of-a-deserialized-object)show the

 TypeNames property of a deserialized object.

 `Import-Clixml` uses the byte-order-mark (BOM) to detect the encoding format

 of the file. If the file has no BOM, it assumes the encoding is UTF8.

 For more information about CLI, see Language independence

 (/dotnet/standard/language-independence).

PARAMETERS

 -First <System.UInt64>

 Gets only the specified number of objects. Enter the number of objects to

 get.

 -IncludeTotalCount <System.Management.Automation.SwitchParameter>

 Reports the total number of objects in the data set followed by the

 selected objects. If the cmdlet can't determine the total count, it

 displays Unknown total count . The integer has an Accuracy property that

 indicates the reliability of the total count value. The value of Accuracy

 ranges from `0.0` to `1.0` where `0.0` means that the cmdlet couldn't

 count the objects, `1.0` means that the count is exact, and a value

 between `0.0` and `1.0` indicates an increasingly reliable estimate.

 Page 2/5

 -LiteralPath <System.String[]>

 Specifies the path to the XML files. Unlike Path , the value of the

 LiteralPath parameter is used exactly as it's typed. No characters are

 interpreted as wildcards. If the path includes escape characters, enclose

 it in single quotation marks. Single quotation marks tell PowerShell not

 to interpret any characters as escape sequences.

 -Path <System.String[]>

 Specifies the path to the XML files.

 -Skip <System.UInt64>

 Ignores the specified number of objects and then gets the remaining

 objects. Enter the number of objects to skip.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -- Example 1: Import a serialized file and recreate an object --

 Get-Process | Export-Clixml -Path .\pi.xml

 $Processes = Import-Clixml -Path .\pi.xml

 --------- Example 2: Import a secure credential object ---------

 $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

 $Credential | Export-Clixml $Credxmlpath

 $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

 $Credential = Import-Clixml $Credxmlpath

 Page 3/5

 The `Export-Clixml` cmdlet encrypts credential objects by using the Windows

 Data Protection API (/previous-versions/windows/apps/hh464970(v=win.10)). The

 encryption ensures that only your user account can decrypt the contents of the

 credential object. The exported `CLIXML` file can't be used on a different

 computer or by a different user.

 In the example, the file in which the credential is stored is represented by

 `TestScript.ps1.credential`. Replace TestScript with the name of the script

 with which you're loading the credential.

 You send the credential object down the pipeline to `Export-Clixml`, and save

 it to the path, `$Credxmlpath`, that you specified in the first command.

 To import the credential automatically into your script, run the final two

 commands. Run `Import-Clixml` to import the secured credential object into

 your script. This import eliminates the risk of exposing plain-text passwords

 in your script.

 Example 3: Inspect the TypeNames property of a deserialized object

 $original = [pscustomobject] @{

 Timestamp = Get-Date

 Label = 'Meeting event'

 }

 $original | Add-Member -MemberType ScriptMethod -Name GetDisplay -Value {

 '{0:yyyy-MM-dd HH:mm} {1}' -f $this.Timestamp, $this.Label

 }

 $original | Get-Member -MemberType ScriptMethod

 TypeName: System.Management.Automation.PSCustomObject

 Name MemberType Definition

 ---- ---------- ----------

 Equals Method bool Equals(System.Object obj) Page 4/5

 GetHashCode Method int GetHashCode()

 GetType Method type GetType()

 ToString Method string ToString()

 Label NoteProperty string Label=Meeting event

 Timestamp NoteProperty System.DateTime Timestamp=1/31/2024 2:27:59 PM

 GetDisplay ScriptMethod System.Object GetDisplay();

 $original | Export-Clixml -Path event.clixml

 $deserialized = Import-CliXml -Path event.clixml

 $deserialized | Get-Member

 TypeName: Deserialized.System.Management.Automation.PSCustomObject

 Name MemberType Definition

 ---- ---------- ----------

 Equals Method bool Equals(System.Object obj)

 GetHashCode Method int GetHashCode()

 GetType Method type GetType()

 ToString Method string ToString()

 Label NoteProperty string Label=Meeting event

 Timestamp NoteProperty System.DateTime Timestamp=1/31/2024 2:27:59 PM

 Note that the type of the object in `$original` is

 System.Management.Automation.PSCustomObject , but the type of the object in

 `$deserialized` is Deserialized.System.Management.Automation.PSCustomObject .

 Also, the `GetDisplay()` method is missing from the deserialized object.

REMARKS

 To see the examples, type: "get-help Import-Clixml -examples".

 For more information, type: "get-help Import-Clixml -detailed".

 For technical information, type: "get-help Import-Clixml -full".

 For online help, type: "get-help Import-Clixml -online"

Page 5/5

