
PowerShell Get-Help on command 'Get-WinEvent'

PS C:\Users\wahid> Get-Help Get-WinEvent

NAME

 Get-WinEvent

SYNOPSIS

 Gets events from event logs and event tracing log files on local and remote

 computers.

SYNTAX

 Get-WinEvent [[-LogName] <System.String[]>] [-ComputerName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-FilterXPath

 <System.String>] [-Force] [-MaxEvents <System.Int64>] [-Oldest]

 [<CommonParameters>]

 Get-WinEvent [-ListLog] <System.String[]> [-ComputerName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-Force]

 [<CommonParameters>]

 Get-WinEvent [-ListProvider] <System.String[]> [-ComputerName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [<CommonParameters>]

Page 1/20

 Get-WinEvent [-ProviderName] <System.String[]> [-ComputerName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-FilterXPath

 <System.String>] [-Force] [-MaxEvents <System.Int64>] [-Oldest]

 [<CommonParameters>]

 Get-WinEvent [-FilterHashtable] <System.Collections.Hashtable[]>

 [-ComputerName <System.String>] [-Credential

 <System.Management.Automation.PSCredential>] [-Force] [-MaxEvents

 <System.Int64>] [-Oldest] [<CommonParameters>]

 Get-WinEvent [-FilterXml] <System.Xml.XmlDocument> [-ComputerName

 <System.String>] [-Credential <System.Management.Automation.PSCredential>]

 [-MaxEvents <System.Int64>] [-Oldest] [<CommonParameters>]

 Get-WinEvent [-Path] <System.String[]> [-Credential

 <System.Management.Automation.PSCredential>] [-FilterXPath <System.String>]

 [-MaxEvents <System.Int64>] [-Oldest] [<CommonParameters>]

DESCRIPTION

 The `Get-WinEvent` cmdlet gets events from event logs, including classic logs,

 such as the System and Application logs. The cmdlet gets data from event logs

 that are generated by the Windows Event Log technology introduced in Windows

 Vista and events in log files generated by Event Tracing for Windows (ETW) .

 By default, `Get-WinEvent` returns event information in the order of newest to

 oldest.

 `Get-WinEvent` lists event logs and event log providers. To interrupt the

 command, press <kbd>CTRL</kbd>+<kbd>C</kbd>. You can get events from selected

 logs or from logs generated by selected event providers. And, you can combine

 events from multiple sources in a single command. `Get-WinEvent` allows you to

 filter events using XPath queries, structured XML queries, and hash table

 queries. Page 2/20

 If you're not running PowerShell as an Administrator, you might see error

 messages that you cannot retrieve information about a log.

PARAMETERS

 -ComputerName <System.String>

 Specifies the name of the computer that this cmdlet gets events from the

 event logs. Type the NetBIOS name, an IP address, or the fully qualified

 domain name (FQDN) of the computer. The default value is the local

 computer, localhost . This parameter accepts only one computer name at a

 time.

 To get event logs from remote computers, configure the firewall port for

 the event log service to allow remote access.

 This cmdlet does not rely on PowerShell remoting. You can use the

 ComputerName parameter even if your computer is not configured to run

 remote commands.

 -Credential <System.Management.Automation.PSCredential>

 Specifies a user account that has permission to perform this action. The

 default value is the current user.

 Type a user name, such as User01 or Domain01\User01 . Or, enter a

 PSCredential object, such as one generated by the `Get-Credential` cmdlet.

 If you type a user name, you are prompted for a password. If you type only

 the parameter name, you are prompted for both a username and a password.

 -FilterHashtable <System.Collections.Hashtable[]>

 Specifies a query in hash table format to select events from one or more

 event logs. The query contains a hash table with one or more key/value

 pairs. Page 3/20

 Hash table queries have the following rules:

 - Keys and values are case-insensitive.

 - Wildcard characters are valid only in the values associated with the

 LogName and ProviderName keys. - Each key can be listed only once in each

 hash table.

 - The Path value takes paths to `.etl`, `.evt`, and `.evtx` log files. -

 The LogName , Path , and ProviderName keys can be used in the same query.

 - The UserID key can take a valid security identifier (SID) or a domain

 account name that can be used to construct a valid

 System.Security.Principal.NTAccount object . - The Data value takes event

 data in an unnamed field. For example, events in classic event logs.

 When `Get-WinEvent` cannot interpret a key/value pair, it interprets the

 key as a case-sensitive name for the event data in the event.

 The valid `Get-WinEvent` key/value pairs are as follows:

 - LogName =`<String[]>` - ProviderName =`<String[]>` - Path =`<String[]>`

 - Keywords =`<Long[]>` - ID =`<Int32[]>` - Level =`<Int32[]>` - StartTime

 =`<DateTime>` - EndTime =`<DateTime>` - UserID =`<SID>` - Data

 =`<String[]>`

 -FilterXml <System.Xml.XmlDocument>

 Specifies a structured XML query that this cmdlet selects events from one

 or more event logs.

 To generate a valid XML query, use the Create Custom View and Filter

 Current Log features in Windows Event Viewer. Use the items in the dialog

 box to create a query, and then click the XML tab to view the query in XML Page 4/20

 format. You can copy the XML from the XML tab into the value of the

 FilterXml parameter. For more information about the Event Viewer features,

 see Event Viewer Help.

 Use an XML query to create a complex query that contains several XPath

 statements. The XML format also allows you to use a Suppress XML element

 that excludes events from the query. For more information about the XML

 schema for event log queries, see Query Schema

 (/windows/win32/wes/queryschema-schema)and the XML Event Queries section

 of Event Selection (/previous-versions/aa385231(v=vs.85)).

 -FilterXPath <System.String>

 Specifies an XPath query that this cmdlet select events from one or more

 logs.

 For more information about the XPath language, see XPath Reference

 (/previous-versions/dotnet/netframework-4.0/ms256115(v=vs.100))and the

 Selection Filters section of Event Selection

 (/previous-versions/aa385231(v=vs.85)).

 -Force <System.Management.Automation.SwitchParameter>

 Gets debug and analytic logs, in addition to other event logs. The Force

 parameter is required to get a debug or analytic log when the value of the

 name parameter includes wildcard characters.

 By default, the `Get-WinEvent` cmdlet excludes these logs unless you

 specify the full name of a debug or analytic log.

 -ListLog <System.String[]>

 Specifies the event logs. Enter the event log names in a comma-separated

 list. Wildcards are permitted. To get all the logs, use the asterisk (`*`)

 wildcard.

 Page 5/20

 -ListProvider <System.String[]>

 Specifies the event log providers that this cmdlet gets. An event log

 provider is a program or service that writes events to the event log.

 Enter the provider names in a comma-separated list. Wildcards are

 permitted. To get the providers of all the event logs on the computer, use

 the asterisk (`*`) wildcard.

 -LogName <System.String[]>

 Specifies the event logs that this cmdlet get events from. Enter the event

 log names in a comma-separated list. Wildcards are permitted. You can also

 pipe log names to the `Get-WinEvent` cmdlet.

 > [!NOTE] > PowerShell does not limit the amount of logs you can request.

 However, the `Get-WinEvent` cmdlet > queries the Windows API which has a

 limit of 256. This can make it difficult to filter through all > of your

 logs at one time. You can work around this by using a `foreach` loop to

 iterate through each > log like this: `Get-WinEvent -ListLog * |

 ForEach-Object{ Get-WinEvent -LogName $_.Logname }`

 -MaxEvents <System.Int64>

 Specifies the maximum number of events that are returned. Enter an integer

 such as 100. The default is to return all the events in the logs or files.

 -Oldest <System.Management.Automation.SwitchParameter>

 Indicate that this cmdlet gets the events in oldest-first order. By

 default, events are returned in newest-first order.

 This parameter is required to get events from `.etl` and `.evt` files and

 from debug and analytic logs. In these files, events are recorded in

 oldest-first order, and the events can be returned only in oldest-first

 order.

 Page 6/20

 -Path <System.String[]>

 Specifies the path to the event log files that this cmdlet get events

 from. Enter the paths to the log files in a comma-separated list, or use

 wildcard characters to create file path patterns.

 `Get-WinEvent` supports files with the `.evt`, `.evtx`, and `.etl` file

 name extensions. You can include events from different files and file

 types in the same command.

 -ProviderName <System.String[]>

 Specifies, as a string array, the event log providers from which this

 cmdlet gets events. Enter the provider names in a comma-separated list, or

 use wildcard characters to create provider name patterns.

 An event log provider is a program or service that writes events to the

 event log. It is not a PowerShell provider.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ------ Example 1: Get all the logs from a local computer ------

 Get-WinEvent -ListLog *

 LogMode MaximumSizeInBytes RecordCount LogName

 ------- ------------------ ----------- -------

 Circular 15532032 14500 Application

 Circular 1052672 117 Azure Information Protection

 Circular 1052672 3015 CxAudioSvcLog

 Circular 20971520 ForwardedEvents Page 7/20

 Circular 20971520 0 HardwareEvents

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListLog

 parameter uses the asterisk (`*`) wildcard to display information about each

 log.

 ------------- Example 2: Get the classic Setup log -------------

 Get-WinEvent -ListLog Setup | Format-List -Property *

 FileSize : 69632

 IsLogFull : False

 LastAccessTime : 3/13/2019 09:41:46

 LastWriteTime : 3/13/2019 09:41:46

 OldestRecordNumber : 1

 RecordCount : 23

 LogName : Setup

 LogType : Operational

 LogIsolation : Application

 IsEnabled : True

 IsClassicLog : False

 SecurityDescriptor : O:BAG:SYD: ...

 LogFilePath : %SystemRoot%\System32\Winevt\Logs\Setup.evtx

 MaximumSizeInBytes : 1052672

 LogMode : Circular

 OwningProviderName : Microsoft-Windows-Eventlog

 ProviderNames : {Microsoft-Windows-WUSA,

 Microsoft-Windows-ActionQueue...

 ProviderLevel :

 ProviderKeywords :

 ProviderBufferSize : 64

 ProviderMinimumNumberOfBuffers : 0

 ProviderMaximumNumberOfBuffers : 64

 ProviderLatency : 1000 Page 8/20

 ProviderControlGuid :

 The `Get-WinEvent` cmdlet uses the ListLog parameter to specify the Setup log.

 The object is sent down the pipeline to the `Format-List` cmdlet.

 `Format-List` uses the Property parameter with the asterisk (`*`) wildcard to

 display each property.

 -------- Example 3: Configure the classic Security log --------

 $log = Get-WinEvent -ListLog Security

 $log.MaximumSizeInBytes = 1gb

 try{

 $log.SaveChanges()

 Get-WinEvent -ListLog Security | Format-List -Property *

 }catch [System.UnauthorizedAccessException]{

 $ErrMsg = 'You do not have permission to configure this log!'

 $ErrMsg += ' Try running this script with administrator privileges. '

 $ErrMsg += $_.Exception.Message

 Write-Error $ErrMsg

 }

 FileSize : 69632

 IsLogFull : False

 LastAccessTime : 3/13/2019 09:41:46

 LastWriteTime : 3/13/2019 09:41:46

 OldestRecordNumber : 1

 RecordCount : 23

 LogName : Security

 LogType : Administrative

 LogIsolation : Custom

 IsEnabled : True

 IsClassicLog : True

 SecurityDescriptor : O:BAG:SYD: ...

 LogFilePath : Page 9/20

 %SystemRoot%\System32\Winevt\Logs\Security.evtx

 MaximumSizeInBytes : 1073741824

 LogMode : Circular

 OwningProviderName :

 ProviderNames : {Microsoft-Windows-WUSA,

 Microsoft-Windows-ActionQueue...

 ProviderLevel :

 ProviderKeywords :

 ProviderBufferSize : 64

 ProviderMinimumNumberOfBuffers : 0

 ProviderMaximumNumberOfBuffers : 64

 ProviderLatency : 1000

 ProviderControlGuid :

 The `Get-WinEvent` cmdlet uses the ListLog parameter to specify the Security

 log. The object is saved to a variable. The MaximumSizeInBytes property is set

 to 1 gigabyte on the object. The SaveChanges method is called to push the

 change to the system inside of a try block to handle access violations. The

 `Get-WinEvent` cmdlet is called again on the Security log and piped to the

 `Format-List` cmdlet to verify that the MaximumSizeInBytes property has been

 saved on the machine.

 ----------- Example 4: Get event logs from a server -----------

 Get-WinEvent -ListLog * -ComputerName localhost | Where-Object {

 $_.RecordCount }

 LogMode MaximumSizeInBytes RecordCount LogName

 ------- ------------------ ----------- -------

 Circular 15532032 14546 Application

 Circular 1052672 117 Azure Information Protection

 Circular 1052672 2990 CxAudioSvcLog

 Circular 1052672 9 MSFTVPN Setup

 Circular 1052672 282 OAlerts Page 10/20

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListLog

 parameter uses the asterisk (` `) wildcard to display information about each

 log. The ComputerName * parameter specifies to get the logs from the local

 computer, localhost . The objects are sent down the pipeline to the

 `Where-Object` cmdlet. `Where-Object` uses `$_.RecordCount` to return only

 logs that contain data. `$_` is a variable that represents the current object

 in the pipeline. RecordCount is a property of the object with a non-null value.

 ------- Example 5: Get event logs from multiple servers -------

 $S = 'Server01', 'Server02', 'Server03'

 ForEach ($Server in $S) {

 Get-WinEvent -ListLog Application -ComputerName $Server |

 Select-Object LogMode, MaximumSizeInBytes, RecordCount, LogName,

 @{name='ComputerName'; expression={$Server}} |

 Format-Table -AutoSize

 }

 LogMode MaximumSizeInBytes RecordCount LogName ComputerName

 ------- ------------------ ----------- ------- ------------

 Circular 15532032 14577 Application Server01

 Circular 15532032 9689 Application Server02

 Circular 15532032 5309 Application Server03

 The variable `$S` stores the names three servers: Server01 , Server02 , and

 Server03 . The ForEach statement uses a loop to process each server, `($Server

 in $S)`. The script block in the curly braces (`{ }`) runs the `Get-WinEvent`

 command. The ListLog parameter specifies the Application log. The ComputerName

 parameter uses the variable `$Server` to get log information from each server.

 The objects are sent down the pipeline to the `Select-Object` cmdlet.

 `Select-Object` gets the properties LogMode , MaximumSizeInBytes , RecordCount

 , LogName , and uses a calculated expression to display the ComputerName using Page 11/20

 the `$Server` variable. The objects are sent down the pipeline to the

 `Format-Table` cmdlet to display the output in the PowerShell console. The

 AutoSize parameter formats the output to fit the screen.

 ------- Example 6: Get event log providers and log names -------

 Get-WinEvent -ListProvider *

 Name : .NET Runtime

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 Name : .NET Runtime Optimization Service

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 The `Get-WinEvent` cmdlet gets log information from the computer. The

 ListProvider parameter uses the asterisk (`*`) wildcard to display information

 about each provider. In the output, the Name is the provider and LogLinks is

 the log that the provider writes to.

 Example 7: Get all event log providers that write to a specific log

 (Get-WinEvent -ListLog Application).ProviderNames

 .NET Runtime

 .NET Runtime Optimization Service

 Application

 Application Error

 Application Hang

 Application Management

 The `Get-WinEvent` cmdlet gets log information from the computer. The ListLog Page 12/20

 parameter uses Application to get objects for that log. ProviderNames is a

 property of the object and displays the providers that write to the

 Application log.

 Example 8: Get event log provider names that contain a specific string

 Get-WinEvent -ListProvider *Policy*

 Name : Group Policy Applications

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 Name : Group Policy Client

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 Name : Group Policy Data Sources

 LogLinks : {Application}

 Opcodes : {}

 Tasks : {}

 The `Get-WinEvent` cmdlet gets log information from the computer. The

 ListProvider parameter uses the asterisk (` `) wildcard to find Policy *

 anywhere within the provider's name.

 -- Example 9: Get Event Ids that the event provider generates --

 (Get-WinEvent -ListProvider Microsoft-Windows-GroupPolicy).Events |

 Format-Table Id, Description

 Id Description

 -- -----------

 1500 The Group Policy settings for the computer were processed successfully... Page 13/20

 1501 The Group Policy settings for the user were processed successfully...

 4115 Group Policy Service started.

 4116 Started the Group Policy service initialization phase.

 4117 Group Policy Session started.

 The `Get-WinEvent` cmdlet gets log information from the computer. The

 ListProvider parameter specifies the provider, Microsoft-Windows-GroupPolicy .

 The expression is wrapped in parentheses and uses the Events property to get

 objects. The objects are sent down the pipeline to the `Format-Table` cmdlet.

 `Format-Table` displays the Id and Description of the event objects.

 - Example 10: Get log information from event object properties -

 $Event = Get-WinEvent -LogName 'Windows PowerShell'

 $Event.Count

 $Event | Group-Object -Property Id -NoElement | Sort-Object -Property Count

 -Descending

 $Event | Group-Object -Property LevelDisplayName -NoElement

 195

 Count Name

 ----- ----

 147 600

 22 400

 21 601

 3 403

 2 103

 Count Name

 ----- ----

 2 Warning

 193 Information

 Page 14/20

 The `Get-WinEvent` cmdlet uses the LogName parameter to specify the Windows

 PowerShell event log. The event objects are stored in the `$Event` variable.

 The Count property of `$Event`shows the total number of logged events.

 The `$Event` variable is sent down the pipeline to the `Group-Object` cmdlet.

 `Group-Object` uses the Property parameter to specify the Id property and

 counts the objects by the event Id value. The NoElement parameter removes

 other properties from the objects output. The grouped objects are sent down

 the pipeline to the `Sort-Object` cmdlet. `Sort-Object` uses the Property

 parameter to sort the objects by Count . The Descending parameter displays the

 output by count, from highest to lowest. In the output, the Count column

 contains the total number of each event. The Name column contains the grouped

 event Id numbers.

 The `$Event` variable is sent down the pipeline to the `Group-Object` cmdlet.

 `Group-Object` uses the Property parameter to specify the LevelDisplayName

 property and counts the objects by LevelDisplayName . The objects are grouped

 by the levels such as Warning and Information . The NoElement parameter

 removes other properties from the output. In the output, the Count column

 contains the total number of each event. The Name column contains the grouped

 LevelDisplayName .

 Example 11: Get error events that have a specified string in their name

 Get-WinEvent -LogName *PowerShell*, Microsoft-Windows-Kernel-WHEA* |

 Group-Object -Property LevelDisplayName, LogName -NoElement |

 Format-Table -AutoSize

 Count Name

 ----- ----

 1 Error, PowerShellCore/Operational

 26 Information, Microsoft-Windows-Kernel-WHEA/Operational

 488 Information, Microsoft-Windows-PowerShell/Operational

 77 Information, PowerShellCore/Operational Page 15/20

 9835 Information, Windows PowerShell

 19 Verbose, PowerShellCore/Operational

 444 Warning, Microsoft-Windows-PowerShell/Operational

 512 Warning, PowerShellCore/Operational

 The `Get-WinEvent` cmdlet gets log information from the computer. The LogName

 parameter uses a comma-separated string with the asterisk (`*`) wildcard to

 specify the log names. The objects are sent down the pipeline to the

 `Group-Object` cmdlet. `Group-Object` uses the Property parameter to group the

 objects by LevelDisplayName and LogName . The NoElement parameter removes

 other properties from the output. The grouped objects are sent down the

 pipeline to the `Format-Table` cmdlet. `Format-Table` uses the AutoSize

 parameter to format the columns. The Count column contains the total number of

 each event. The Name column contains the grouped LevelDisplayName and LogName .

 ------ Example 12: Get events from an archived event log ------

 Get-WinEvent -Path 'C:\Test\Windows PowerShell.evtx'

 ProviderName: PowerShell

 TimeCreated Id LevelDisplayName Message

 ----------- -- ---------------- -------

 3/15/2019 13:54:13 403 Information Engine state is changed from

 Available to Stopped...

 3/15/2019 13:54:13 400 Information Engine state is changed from

 None to Available...

 3/15/2019 13:54:13 600 Information Provider "Variable" is Started...

 3/15/2019 13:54:13 600 Information Provider "Function" is Started...

 3/15/2019 13:54:13 600 Information Provider "FileSystem" is

 Started...

 The `Get-WinEvent` cmdlet gets log information from the computer. The Path

 parameter specifies the directory and file name. Page 16/20

 Example 13: Get a specific number of events from an archived event log

 Get-WinEvent -Path 'C:\Test\PowerShellCore Operational.evtx' -MaxEvents 100

 ProviderName: PowerShellCore

 TimeCreated Id LevelDisplayName Message

 ----------- -- ---------------- -------

 3/15/2019 09:54:54 4104 Warning Creating Scriptblock text

 (1 of 1):...

 3/15/2019 09:37:13 40962 Information PowerShell console is ready

 for user input

 3/15/2019 07:56:24 4104 Warning Creating Scriptblock text

 (1 of 1):...

 ...

 3/7/2019 10:53:22 40961 Information PowerShell console is

 starting up

 3/7/2019 10:53:22 8197 Verbose Runspace state changed to

 Opening

 3/7/2019 10:53:22 8195 Verbose Opening RunspacePool

 The `Get-WinEvent` cmdlet gets log information from the computer. The Path

 parameter specifies the directory and filename. The MaxEvents parameter

 specifies that 100 records are displayed, from newest to oldest.

 ------------ Example 14: Event Tracing for Windows ------------

 Get-WinEvent -Path 'C:\Tracing\TraceLog.etl' -Oldest |

 Sort-Object -Property TimeCreated -Descending |

 Select-Object -First 100

 The `Get-WinEvent` cmdlet gets log information from the archived file. The

 Path parameter specifies the directory and file name. The Oldest parameter is

 used to output events in the order they are written, oldest to newest. The Page 17/20

 objects are sent down the pipeline to the `Sort-Object` cmdlet `Sort-Object`

 sorts the objects in descending order by the value of the TimeCreated

 property. The objects are sent down the pipeline to the `Select-Object` cmdlet

 that displays the 100 newest events.

 -------- Example 15: Get events from an event trace log --------

 Get-WinEvent -Path 'C:\Tracing\TraceLog.etl', 'C:\Test\Windows

 PowerShell.evtx' -Oldest |

 Where-Object { $_.Id -eq '403' }

 The `Get-WinEvent` cmdlet gets log information from the archived files. The

 Path parameter uses a comma-separated list to specify each files directory and

 file name. The Oldest parameter is used to output events in the order they are

 written, oldest to newest. The objects are sent down the pipeline to the

 `Where-Object` cmdlet. `Where-Object` uses a script block to find events with

 an Id of 403 . The `$_` variable represents the current object in the pipeline

 and Id is the Event Id property.

 ------------- Example 16: Filter event log results -------------

 # Using the Where-Object cmdlet:

 $Yesterday = (Get-Date) - (New-TimeSpan -Day 1)

 Get-WinEvent -LogName 'Windows PowerShell' | Where-Object { $_.TimeCreated -ge

 $Yesterday }

 # Using the FilterHashtable parameter:

 $Yesterday = (Get-Date) - (New-TimeSpan -Day 1)

 Get-WinEvent -FilterHashtable @{ LogName='Windows PowerShell'; Level=3;

 StartTime=$Yesterday }

 # Using the FilterXML parameter:

 $xmlQuery = @'

 <QueryList>

 <Query Id="0" Path="Windows PowerShell"> Page 18/20

 <Select Path="System">*[System[(Level=3) and

 TimeCreated[timediff(@SystemTime) <= 86400000]]]</Select>

 </Query>

 </QueryList>

 '@

 Get-WinEvent -FilterXML $xmlQuery

 # Using the FilterXPath parameter:

 $XPath = '*[System[Level=3 and TimeCreated[timediff(@SystemTime) <=

 86400000]]]'

 Get-WinEvent -LogName 'Windows PowerShell' -FilterXPath $XPath

 Example 17: Use FilterHashtable to get events from the Application log

 $Date = (Get-Date).AddDays(-2)

 Get-WinEvent -FilterHashtable @{ LogName='Application'; StartTime=$Date;

 Id='1003' }

 The `Get-Date` cmdlet uses the AddDays method to get a date that is two days

 before the current date. The date object is stored in the `$Date` variable.

 The `Get-WinEvent` cmdlet gets log information. The FilterHashtable parameter

 is used to filter the output. The LogName key specifies the value as the

 Application log. The StartTime key uses the value stored in the `$Date`

 variable. The Id key uses an Event Id value, 1003 .

 -- Example 18: Use FilterHashtable to get application errors --

 $StartTime = (Get-Date).AddDays(-7)

 Get-WinEvent -FilterHashtable @{

 Logname='Application'

 ProviderName='Application Error'

 Data='iexplore.exe' Page 19/20

 StartTime=$StartTime

 }

 The `Get-Date` cmdlet uses the AddDays method to get a date that is seven days

 before the current date. The date object is stored in the `$StartTime`

 variable.

 The `Get-WinEvent` cmdlet gets log information. The FilterHashtable parameter

 is used to filter the output. The LogName key specifies the value as the

 Application log. The ProviderName key uses the value, Application Error ,

 which is the event's Source . The Data key uses the value iexplore.exe The

 StartTime key uses the value stored in `$StartTime` variable.

REMARKS

 To see the examples, type: "get-help Get-WinEvent -examples".

 For more information, type: "get-help Get-WinEvent -detailed".

 For technical information, type: "get-help Get-WinEvent -full".

 For online help, type: "get-help Get-WinEvent -online"

Page 20/20

