
PowerShell Get-Help on command 'Get-Process'

PS C:\Users\wahid> Get-Help Get-Process

NAME

 Get-Process

SYNOPSIS

 Gets the processes that are running on the local computer or a remote computer.

SYNTAX

 Get-Process [[-Name] <System.String[]>] [-ComputerName <System.String[]>]

 [-FileVersionInfo] [-Module] [<CommonParameters>]

 Get-Process [-ComputerName <System.String[]>] [-FileVersionInfo] -Id

 <System.Int32[]> [-Module] [<CommonParameters>]

 Get-Process [-ComputerName <System.String[]>] [-FileVersionInfo] -InputObject

 <System.Diagnostics.Process[]> [-Module] [<CommonParameters>]

 Get-Process -Id <System.Int32[]> -IncludeUserName [<CommonParameters>]

 Get-Process [[-Name] <System.String[]>] -IncludeUserName [<CommonParameters>]

Page 1/10

 Get-Process -IncludeUserName -InputObject <System.Diagnostics.Process[]>

 [<CommonParameters>]

DESCRIPTION

 The `Get-Process` cmdlet gets the processes on a local or remote computer.

 Without parameters, this cmdlet gets all of the processes on the local

 computer. You can also specify a particular process by process name or process

 ID (PID) or pass a process object through the pipeline to this cmdlet.

 By default, this cmdlet returns a process object that has detailed information

 about the process and supports methods that let you start and stop the

 process. You can also use the parameters of the `Get-Process` cmdlet to get

 file version information for the program that runs in the process and to get

 the modules that the process loaded.

PARAMETERS

 -ComputerName <System.String[]>

 Specifies the computers for which this cmdlet gets active processes. The

 default is the local computer.

 Type the NetBIOS name, an IP address, or a fully qualified domain name

 (FQDN) of one or more computers. To specify the local computer, type the

 computer name, a dot (`.`), or `localhost`.

 This parameter does not rely on Windows PowerShell remoting. You can use

 the ComputerName parameter of this cmdlet even if your computer is not

 configured to run remote commands.

 -FileVersionInfo <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet gets the file version information for the Page 2/10

 program that runs in the process.

 On Windows Vista and later versions of Windows, you must open PowerShell

 with the **Run as administrator** option to use this parameter on

 processes that you do not own.

 You cannot use the FileVersionInfo and ComputerName parameters of the

 `Get-Process` cmdlet in the same command.

 To get file version information for a process on a remote computer, use

 the `Invoke-Command` cmdlet.

 Using this parameter is equivalent to getting the

 MainModule.FileVersionInfo property of each process object. When you use

 this parameter, `Get-Process` returns a FileVersionInfo object

 System.Diagnostics.FileVersionInfo , not a process object. So, you cannot

 pipe the output of the command to a cmdlet that expects a process object,

 such as `Stop-Process`.

 -Id <System.Int32[]>

 Specifies one or more processes by process ID (PID). To specify multiple

 IDs, use commas to separate the IDs. To find the PID of a process, type

 `Get-Process`.

 -IncludeUserName <System.Management.Automation.SwitchParameter>

 Indicates that the UserName value of the Process object is returned with

 results of the command.

 -InputObject <System.Diagnostics.Process[]>

 Specifies one or more process objects. Enter a variable that contains the

 objects, or type a command or expression that gets the objects.

 -Module <System.Management.Automation.SwitchParameter> Page 3/10

 Indicates that this cmdlet gets the modules that have been loaded by the

 processes.

 On Windows Vista and later versions of Windows, you must open PowerShell

 with the **Run as administrator** option to use this parameter on

 processes that you do not own.

 To get the modules that have been loaded by a process on a remote

 computer, use the `Invoke-Command` cmdlet.

 This parameter is equivalent to getting the Modules property of each

 process object. When you use this parameter, this cmdlet returns a

 ProcessModule object System.Diagnostics.ProcessModule , not a process

 object. So, you cannot pipe the output of the command to a cmdlet that

 expects a process object, such as `Stop-Process`.

 When you use both the Module and FileVersionInfo parameters in the same

 command, this cmdlet returns a FileVersionInfo object with information

 about the file version of all modules.

 -Name <System.String[]>

 Specifies one or more processes by process name. You can type multiple

 process names (separated by commas) and use wildcard characters. The

 parameter name (`Name`) is optional.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 Example 1: Get a list of all active processes on the local computer

 Page 4/10

 Get-Process

 This command gets a list of all active processes running on the local

 computer. For a definition of each column, see the Notes (#notes)section.

 Example 2: Get all available data about one or more processes

 Get-Process winword, explorer | Format-List *

 This command gets all available data about the Winword and Explorer processes

 on the computer. It uses the Name parameter to specify the processes, but it

 omits the optional parameter name. The pipeline operator (`|`) passes the data

 to the `Format-List` cmdlet, which displays all available properties (`*`) of

 the Winword and Explorer process objects.

 You can also identify the processes by their process IDs. For instance,

 `Get-Process -Id 664, 2060`.

 Example 3: Get all processes with a working set greater than a specified size

 Get-Process | Where-Object {$_.WorkingSet -gt 20000000}

 This command gets all processes that have a working set greater than 20 MB. It

 uses the `Get-Process` cmdlet to get all running processes. The pipeline

 operator (`|`) passes the process objects to the `Where-Object` cmdlet, which

 selects only the object with a value greater than 20,000,000 bytes for the

 WorkingSet property. WorkingSet is one of many properties of process objects.

 To see all of the properties, type `Get-Process | Get-Member`. By default, the

 values of all amount properties are in bytes, even though the default display

 lists them in kilobytes and megabytes.

 Example 4: List processes on the computer in groups based on priority

 $A = Get-Process

 $A | Get-Process | Format-Table -View priority

 Page 5/10

 These commands list the processes on the computer in groups based on their

 priority class. The first command gets all the processes on the computer and

 then stores them in the `$A` variable.

 The second command pipes the Process object stored in the `$A` variable to the

 `Get-Process` cmdlet, then to the `Format-Table` cmdlet, which formats the

 processes by using the Priority view.

 The Priority view, and other views, are defined in the PS1XML format files in

 the PowerShell home directory (`$pshome`).

 Example 5: Add a property to the standard Get-Process output display

 Get-Process powershell | Format-Table `

 @{Label = "NPM(K)"; Expression = {[int]($_.NPM / 1024)}},

 @{Label = "PM(K)"; Expression = {[int]($_.PM / 1024)}},

 @{Label = "WS(K)"; Expression = {[int]($_.WS / 1024)}},

 @{Label = "VM(M)"; Expression = {[int]($_.VM / 1MB)}},

 @{Label = "CPU(s)"; Expression = {if ($_.CPU) {$_.CPU.ToString("N")}}},

 Id, ProcessName, StartTime -AutoSize

 NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName StartTime

 ------ ----- ----- ----- ------ -- ----------- ---------

 143 239540 259384 2366162 22.73 12720 powershell 12/5/2022 3:21:51 PM

 114 61776 104588 2366127 11.45 18336 powershell 12/5/2022 7:30:53 AM

 156 77924 82060 2366185 10.47 18812 powershell 12/5/2022 7:30:52 AM

 85 48216 115192 2366074 1.14 24428 powershell 12/8/2022 9:14:15 AM

 This example retrieves processes from the local computer. The retrieved

 processes are piped to the `Format-Table` command that adds the StartTime

 property to the standard `Get-Process` output display.

 ------- Example 6: Get version information for a process -------

 Get-Process powershell -FileVersionInfo Page 6/10

 ProductVersion FileVersion FileName

 -------------- ----------- --------

 6.1.6713.1 6.1.6713.1 (f...

 C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe

 This command uses the FileVersionInfo parameter to get the version information

 for the `powershell.exe` file that is the main module for the PowerShell

 process.

 To run this command with processes that you do not own on Windows Vista and

 later versions of Windows, you must open PowerShell with the Run as

 administrator option.

 --- Example 7: Get modules loaded with the specified process ---

 Get-Process SQL* -Module

 This command uses the Module parameter to get the modules that have been

 loaded by the process. This command gets the modules for the processes that

 have names that begin with `SQL`.

 To run this command on Windows Vista and later versions of Windows with

 processes that you do not own, you must start PowerShell with the Run as

 administrator option.

 ------------ Example 8: Find the owner of a process ------------

 Get-Process pwsh -IncludeUserName

 Handles WS(K) CPU(s) Id UserName ProcessName

 ------- ----- ------ -- -------- -----------

 782 132080 2.08 2188 DOMAIN01\user01 powershell

 $p = Get-WmiObject Win32_Process -Filter "name='powershell.exe'" Page 7/10

 $p.GetOwner()

 __GENUS : 2

 __CLASS : __PARAMETERS

 __SUPERCLASS :

 __DYNASTY : __PARAMETERS

 __RELPATH :

 __PROPERTY_COUNT : 3

 __DERIVATION : {}

 __SERVER :

 __NAMESPACE :

 __PATH :

 Domain : DOMAIN01

 ReturnValue : 0

 User : user01

 The first command shows how to find the owner of a process. The

 IncludeUserName parameter requires elevated user rights (Run as Administrator

). The output reveals that the owner is `Domain01\user01`.

 The second and third command are another way to find the owner of a process.

 The second command uses `Get-WmiObject` to get the PowerShell process. It

 saves it in the `$p` variable.

 The third command uses the GetOwner method to get the owner of the process in

 `$p`. The output reveals that the owner is `Domain01\user01`.

 Example 9: Use an automatic variable to identify the process hosting the

 current session

 Get-Process powershell

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName Page 8/10

 ------- ------ ----- ----- ----- ------ -- -----------

 308 26 52308 61780 567 3.18 5632 powershell

 377 26 62676 63384 575 3.88 5888 powershell

 Get-Process -Id $PID

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

 ------- ------ ----- ----- ----- ------ -- -----------

 396 26 56488 57236 575 3.90 5888 powershell

 These commands show how to use the `$PID` automatic variable to identify the

 process that is hosting the current PowerShell session. You can use this

 method to distinguish the host process from other PowerShell processes that

 you might want to stop or close.

 The first command gets all of the PowerShell processes in the current session.

 The second command gets the PowerShell process that is hosting the current

 session.

 Example 10: Get all processes that have a main window title and display them

 in a table

 Get-Process | Where-Object {$_.mainWindowTitle} | Format-Table Id, Name,

 mainWindowtitle -AutoSize

 This command gets all the processes that have a main window title, and it

 displays them in a table with the process ID and the process name.

 The mainWindowTitle property is just one of many useful properties of the

 Process object that `Get-Process` returns. To view all of the properties, pipe

 the results of a `Get-Process` command to the `Get-Member` cmdlet `Get-Process

 | Get-Member`.

REMARKS Page 9/10

 To see the examples, type: "get-help Get-Process -examples".

 For more information, type: "get-help Get-Process -detailed".

 For technical information, type: "get-help Get-Process -full".

 For online help, type: "get-help Get-Process -online"

Page 10/10

