
PowerShell Get-Help on command 'Get-Content'

PS C:\Users\wahid> Get-Help Get-Content

NAME

 Get-Content

SYNOPSIS

 Gets the content of the item at the specified location.

SYNTAX

 Get-Content [-Credential <System.Management.Automation.PSCredential>]

 [-Delimiter <System.String>] [-Encoding {ASCII | BigEndianUnicode |

 BigEndianUTF32 | Byte | Default | OEM | String | Unicode | Unknown | UTF7 |

 UTF8 | UTF32}] [-Exclude <System.String[]>] [-Filter <System.String>] [-Force]

 [-Include <System.String[]>] -LiteralPath <System.String[]> [-Raw] [-ReadCount

 <System.Int64>] [-Stream <System.String>] [-Tail <System.Int32>] [-TotalCount

 <System.Int64>] [-UseTransaction] [-Wait] [<CommonParameters>]

 Get-Content [-Path] <System.String[]> [-Credential

 <System.Management.Automation.PSCredential>] [-Delimiter <System.String>]

 [-Encoding {ASCII | BigEndianUnicode | BigEndianUTF32 | Byte | Default | OEM |

 String | Unicode | Unknown | UTF7 | UTF8 | UTF32}] [-Exclude

 <System.String[]>] [-Filter <System.String>] [-Force] [-Include
Page 1/13

 <System.String[]>] [-Raw] [-ReadCount <System.Int64>] [-Stream

 <System.String>] [-Tail <System.Int32>] [-TotalCount <System.Int64>]

 [-UseTransaction] [-Wait] [<CommonParameters>]

DESCRIPTION

 The `Get-Content` cmdlet gets the content of the item at the location

 specified by the path, such as the text in a file or the content of a

 function. For files, the content is read one line at a time and returns a

 collection of objects, each representing a line of content.

 Beginning in PowerShell 3.0, `Get-Content` can also get a specified number of

 lines from the beginning or end of an item.

PARAMETERS

 -Credential <System.Management.Automation.PSCredential>

 > [!NOTE] > This parameter isn't supported by any providers installed with

 PowerShell. To impersonate another > user, or elevate your credentials

 when running this cmdlet, use > Invoke-Command

 (../Microsoft.PowerShell.Core/Invoke-Command.md).

 -Delimiter <System.String>

 Specifies the delimiter that `Get-Content` uses to divide the file into

 objects while it reads. The default is `\n`, the end-of-line character.

 When reading a text file, `Get-Content` returns a collection of string

 objects, each ending with an end-of-line character. When you enter a

 delimiter that doesn't exist in the file, `Get-Content` returns the entire

 file as a single, undelimited object.

 You can use this parameter to split a large file into smaller files by

 specifying a file separator, as the delimiter. The delimiter is preserved

 (not discarded) and becomes the last item in each file section. Delimiter Page 2/13

 is a dynamic parameter that the FileSystem provider adds to the

 `Get-Content` cmdlet. This parameter works only in file system drives.

 > [!NOTE] > Currently, when the value of the Delimiter parameter is an

 empty string, `Get-Content` does > not return anything. This is a known

 issue. To force `Get-Content` to return the entire file as > a single,

 undelimited string. Enter a value that doesn't exist in the file.

 -Encoding <Microsoft.PowerShell.Commands.FileSystemCmdletProviderEncoding>

 Specifies the type of encoding for the target file. The default value is

 `Default`.

 The acceptable values for this parameter are as follows:

 - `Ascii` Uses ASCII (7-bit) character set.

 - `BigEndianUnicode` Uses UTF-16 with the big-endian byte order.

 - `BigEndianUTF32` Uses UTF-32 with the big-endian byte order.

 - `Byte` Encodes a set of characters into a sequence of bytes.

 - `Default` Uses the encoding that corresponds to the system's active code

 page (usually ANSI).

 - `Oem` Uses the encoding that corresponds to the system's current OEM

 code page.

 - `String` Same as `Unicode`.

 - `Unicode` Uses UTF-16 with the little-endian byte order.

 - `Unknown` Same as `Unicode`. Page 3/13

 - `UTF7` Uses UTF-7.

 - `UTF8` Uses UTF-8.

 - `UTF32` Uses UTF-32 with the little-endian byte order.

 Encoding is a dynamic parameter that the FileSystem provider adds to the

 `Get-Content` cmdlet. This parameter works only in file system drives.

 When reading from and writing to binary files, use a value of Byte for the

 Encoding dynamic parameter and a value of 0 for the ReadCount parameter. A

 ReadCount value of 0 reads the entire file in a single read operation and

 converts it into a single object (PSObject). The default ReadCount value,

 1, reads one byte in each read operation and converts each byte into a

 separate object, which causes errors when you use the `Set-Content` cmdlet

 to write the bytes to a file.

 -Exclude <System.String[]>

 Specifies, as a string array, an item or items that this cmdlet excludes

 in the operation. The value of this parameter qualifies the Path parameter.

 Enter a path element or pattern, such as `*.txt`. Wildcard characters are

 permitted.

 The Exclude parameter is effective only when the command includes the

 contents of an item, such as `C:\Windows*`, where the wildcard character

 specifies the contents of the `C:\Windows` directory.

 -Filter <System.String>

 Specifies a filter to qualify the Path parameter. The FileSystem

 (../Microsoft.PowerShell.Core/About/about_FileSystem_Provider.md)provider Page 4/13

 is the only installed PowerShell provider that supports the use of

 filters. You can find the syntax for the FileSystem filter language in

 about_Wildcards (../Microsoft.PowerShell.Core/About/about_Wildcards.md).

 Filters are more efficient than other parameters, because the provider

 applies them when the cmdlet gets the objects rather than having

 PowerShell filter the objects after they're retrieved.

 -Force <System.Management.Automation.SwitchParameter>

 Force can override a read-only attribute or create directories to complete

 a file path. The Force parameter doesn't attempt to change file

 permissions or override security restrictions.

 -Include <System.String[]>

 Specifies, as a string array, an item or items that this cmdlet includes

 in the operation. The value of this parameter qualifies the Path

 parameter. Enter a path element or pattern, such as `" .txt"`. Wildcard

 characters are permitted. The Include * parameter is effective only when

 the command includes the contents of an item, such as `C:\Windows*`, where

 the wildcard character specifies the contents of the `C:\Windows`

 directory.

 -LiteralPath <System.String[]>

 Specifies a path to one or more locations. The value of LiteralPath is

 used exactly as it's typed. No characters are interpreted as wildcards. If

 the path includes escape characters, enclose it in single quotation marks.

 Single quotation marks tell PowerShell not to interpret any characters as

 escape sequences.

 For more information, see about_Quoting_Rules

 (../Microsoft.Powershell.Core/About/about_Quoting_Rules.md).

 -Path <System.String[]>

 Specifies the path to an item where `Get-Content` gets the content. Page 5/13

 Wildcard characters are permitted. The paths must be paths to items, not

 to containers. For example, you must specify a path to one or more files,

 not a path to a directory.

 -Raw <System.Management.Automation.SwitchParameter>

 Ignores newline characters and returns the entire contents of a file in

 one string with the newlines preserved. By default, newline characters in

 a file are used as delimiters to separate the input into an array of

 strings. This parameter was introduced in PowerShell 3.0. Raw is a dynamic

 parameter that the FileSystem provider adds to the `Get-Content` cmdlet

 This parameter works only in file system drives.

 -ReadCount <System.Int64>

 Specifies how many lines of content are sent through the pipeline at a

 time. The default value is 1. A value of 0 (zero) or negative numbers

 sends all the content at one time.

 This parameter doesn't change the content displayed, but it does affect

 the time it takes to display the content. As the value of ReadCount

 increases, the time it takes to return the first line increases, but the

 total time for the operation decreases. This can make a perceptible

 difference in large items.

 -Stream <System.String>

 Gets the contents of the specified alternate NTFS file stream from the

 file. Enter the stream name. Wildcards aren't supported. Stream is a

 dynamic parameter that the FileSystem provider adds to the `Get-Content`

 cmdlet. This parameter works only in file system drives on Windows systems.

 This parameter was introduced in Windows PowerShell 3.0.

 -Tail <System.Int32>

 Specifies the number of lines from the end of a file or other item. You Page 6/13

 can use the Tail parameter name or its alias, Last . Negative values cause

 the cmdlet to return the entire contents.

 This parameter was introduced in PowerShell 3.0.

 -TotalCount <System.Int64>

 Specifies the number of lines from the beginning of a file or other item.

 Negative values cause the cmdlet to return the entire contents.

 You can use the TotalCount parameter name or its aliases, First or Head .

 -UseTransaction <System.Management.Automation.SwitchParameter>

 Includes the command in the active transaction. This parameter is valid

 only when a transaction is in progress. For more information, see

 about_Transactions

 (../Microsoft.PowerShell.Core/About/about_Transactions.md).

 -Wait <System.Management.Automation.SwitchParameter>

 Causes the cmdlet to wait indefinitely, keeping the file open, until

 interrupted. While waiting, `Get-Content` checks the file once per second

 and outputs new lines if present. When used with the TotalCount parameter,

 `Get-Content` waits until the specified number of lines are available in

 the specified file. For example, if you specify a TotalCount of 10 and the

 file already has 10 or more lines, `Get-Content` returns the 10 lines and

 exits. If the file has fewer than 10 lines, `Get-Content` outputs each

 line as it arrives, but waits until the tenth line arrives before exiting.

 You can interrupt Wait by pressing <kbd>Ctrl</kbd>+<kbd>C</kbd>. Deleting

 the file causes a non-terminating error that also interrupts the waiting.

 Wait is a dynamic parameter that the FileSystem provider adds to the

 `Get-Content` cmdlet. This parameter works only in file system drives.

 Wait can't be combined with Raw .

 Page 7/13

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ---------- Example 1: Get the content of a text file ----------

 1..100 | ForEach-Object { Add-Content -Path .\LineNumbers.txt -Value "This is

 line $_." }

 Get-Content -Path .\LineNumbers.txt

 This is Line 1

 This is Line 2

 ...

 This is line 99.

 This is line 100.

 The array values 1-100 are sent down the pipeline to the `ForEach-Object`

 cmdlet. `ForEach-Object` uses a script block with the `Add-Content` cmdlet to

 create the `LineNumbers.txt` file. The variable `$_` represents the array

 values as each object is sent down the pipeline. The `Get-Content` cmdlet uses

 the Path parameter to specify the `LineNumbers.txt` file and displays the

 content in the PowerShell console.

 --- Example 2: Limit the number of lines Get-Content returns ---

 Get-Content -Path .\LineNumbers.txt -TotalCount 5

 This is Line 1

 This is Line 2

 This is Line 3

 This is Line 4

 This is Line 5 Page 8/13

 -- Example 3: Get a specific line of content from a text file --

 (Get-Content -Path .\LineNumbers.txt -TotalCount 25)[-1]

 This is Line 25

 The `Get-Content` command is wrapped in parentheses so that the command

 completes before going to the next step. `Get-Content`returns an array of

 lines, this allows you to add the index notation after the parenthesis to

 retrieve a specific line number. In this case, the `[-1]` index specifies the

 last index in the returned array of 25 retrieved lines.

 --------- Example 4: Get the last line of a text file ---------

 Get-Item -Path .\LineNumbers.txt | Get-Content -Tail 1

 This is Line 100

 This example uses the `Get-Item` cmdlet to demonstrate that you can pipe files

 to `Get-Content`. The Tail parameter gets the last line of the file. This

 method is faster than retrieving all the lines in a variable and using the

 `[-1]` index notation.

 ---- Example 5: Get the content of an alternate data stream ----

 Set-Content -Path .\Stream.txt -Value 'This is the content of the Stream.txt

 file'

 # Specify a wildcard to the Stream parameter to display all streams of the

 recently created file.

 Get-Item -Path .\Stream.txt -Stream *

 PSPath : Microsoft.PowerShell.Core\FileSystem::C:\Test\Stream.txt::$DATA

 PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\Test Page 9/13

 PSChildName : Stream.txt::$DATA

 PSDrive : C

 PSProvider : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer : False

 FileName : C:\Test\Stream.txt

 Stream : :$DATA

 Length : 44

 # Retrieve the content of the primary stream.

 # Note the single quotes to prevent variable substitution.

 Get-Content -Path .\Stream.txt -Stream ':$DATA'

 This is the content of the Stream.txt file

 # Alternative way to get the same content.

 Get-Content -Path .\Stream.txt -Stream ""

 # The primary stream doesn't need to be specified to get the primary stream of

 the file.

 # This gets the same data as the prior two examples.

 Get-Content -Path .\Stream.txt

 This is the content of the Stream.txt file

 # Use the Stream parameter of Add-Content to create a new Stream containing

 sample content.

 $addContentSplat = @{

 Path = '.\Stream.txt'

 Stream = 'NewStream'

 Value = 'Added a stream named NewStream to Stream.txt'

 }

 Add-Content @addContentSplat

 # Use Get-Item to verify the stream was created. Page 10/13

 Get-Item -Path .\Stream.txt -Stream *

 PSPath : Microsoft.PowerShell.Core\FileSystem::C:\Test\Stream.txt::$DATA

 PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\Test

 PSChildName : Stream.txt::$DATA

 PSDrive : C

 PSProvider : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer : False

 FileName : C:\Test\Stream.txt

 Stream : :$DATA

 Length : 44

 PSPath :

 Microsoft.PowerShell.Core\FileSystem::C:\Test\Stream.txt:NewStream

 PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\Test

 PSChildName : Stream.txt:NewStream

 PSDrive : C

 PSProvider : Microsoft.PowerShell.Core\FileSystem

 PSIsContainer : False

 FileName : C:\Test\Stream.txt

 Stream : NewStream

 Length : 46

 # Retrieve the content of your newly created Stream.

 Get-Content -Path .\Stream.txt -Stream NewStream

 Added a stream named NewStream to Stream.txt

 The Stream parameter is a dynamic parameter of the FileSystem provider (../micr

 osoft.powershell.core/about/about_filesystem_provider.md#stream-string). By

 default `Get-Content` only retrieves data from the default, or `:$DATA`

 stream. Streams can be used to store hidden data such as attributes, security

 settings, or other data. Page 11/13

 ------------------ Example 6: Get raw content ------------------

 $raw = Get-Content -Path .\LineNumbers.txt -Raw

 $lines = Get-Content -Path .\LineNumbers.txt

 Write-Host "Raw contains $($raw.Count) lines."

 Write-Host "Lines contains $($lines.Count) lines."

 Raw contains 1 lines.

 Lines contains 100 lines.

 ----------- Example 7: Use Filters with Get-Content -----------

 Get-Content -Path C:\Temp* -Filter *.log

 --------- Example 8: Get file contents as a byte array ---------

 $byteArray = Get-Content -Path C:\temp\test.txt -Encoding Byte -Raw

 Get-Member -InputObject $bytearray

 TypeName: System.Byte[]

 Name MemberType Definition

 ---- ---------- ----------

 Count AliasProperty Count = Length

 Add Method int IList.Add(System.Object value)

 The first command uses the Encoding parameter to get the stream of bytes from

 the file. The Raw parameter ensures that the bytes are returned as a

 `[System.Byte[]]`. If the Raw parameter was absent, the return value is a

 stream of bytes, which is interpreted by PowerShell as `[System.Object[]]`.

REMARKS Page 12/13

 To see the examples, type: "get-help Get-Content -examples".

 For more information, type: "get-help Get-Content -detailed".

 For technical information, type: "get-help Get-Content -full".

 For online help, type: "get-help Get-Content -online"

Page 13/13

