
PowerShell Get-Help on command 'Format-List'

PS C:\Users\wahid> Get-Help Format-List

NAME

 Format-List

SYNOPSIS

 Formats the output as a list of properties in which each property appears on a

 new line.

SYNTAX

 Format-List [[-Property] <System.Object[]>] [-DisplayError] [-Expand {CoreOnly

 | EnumOnly | Both}] [-Force] [-GroupBy <System.Object>] [-InputObject

 <System.Management.Automation.PSObject>] [-ShowError] [-View <System.String>]

 [<CommonParameters>]

DESCRIPTION

 The `Format-List` cmdlet formats the output of a command as a list of

 properties in which each property is displayed on a separate line. You can use

 `Format-List` to format and display all or selected properties of an object as

 a list (`Format-List -Property *`).

Page 1/6

 Because more space is available for each item in a list than in a table,

 PowerShell displays more properties of the object in the list, and the

 property values are less likely to be truncated.

PARAMETERS

 -DisplayError <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet displays errors at the command line. This

 parameter is rarely used, but can be used as a debugging aid when you are

 formatting expressions in a `Format-List` command, and the expressions do

 not appear to be working.

 -Expand <System.String>

 Specifies the formatted collection object, as well as the objects in the

 collection. This parameter is designed to format objects that support the

 System.Collections.ICollection interface. The default value is `EnumOnly`.

 The acceptable values for this parameter are:

 - `EnumOnly`. Displays the properties of the objects in the collection.

 - `CoreOnly`. Displays the properties of the collection object.

 - `Both`. Displays the properties of the collection object and the

 properties of objects in the

 collection.

 -Force <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet displays all the error information. Use with

 the DisplayError or ShowError parameter. By default, when an error object

 is written to the error or display streams, only some error information is

 displayed.

 Page 2/6

 Also required when formatting certain .NET types. For more information,

 see the Notes (#notes)section.

 -GroupBy <System.Object>

 Specifies the output in groups based on a shared property or value. Enter

 an expression or a property of the output.

 The value of the GroupBy parameter can be a new calculated property. The

 calculated property can be a script block or a hash table. Valid key-value

 pairs are:

 - `Name` (or `Label`) - `<string>`

 - `Expression` - `<string>` or `<script block>`

 - `FormatString` - `<string>`

 For more information, see about_Calculated_Properties

 (../Microsoft.PowerShell.Core/About/about_Calculated_Properties.md).

 -InputObject <System.Management.Automation.PSObject>

 Specifies the objects to be formatted. Enter a variable that contains the

 objects or type a command or expression that gets the objects.

 -Property <System.Object[]>

 Specifies the object properties that appear in the display and the order

 in which they appear. Wildcards are permitted.

 If you omit this parameter, the properties that appear in the display

 depend on the object being displayed. The parameter name Property is

 optional. You cannot use the Property and View parameters in the same Page 3/6

 command.

 The value of the Property parameter can be a new calculated property. The

 calculated property can be a script block or a hash table. Valid key-value

 pairs are:

 - `Name` (or `Label`) - `<string>`

 - `Expression` - `<string>` or `<script block>`

 - `FormatString` - `<string>`

 For more information, see about_Calculated_Properties

 (../Microsoft.PowerShell.Core/About/about_Calculated_Properties.md).

 -ShowError <System.Management.Automation.SwitchParameter>

 Indicates that the cmdlet sends errors through the pipeline. This

 parameter is rarely used, but can be used as a debugging aid when you are

 formatting expressions in a `Format-List` command, and the expressions do

 not appear to be working.

 -View <System.String>

 Specifies the name of an alternate list format or view. You cannot use the

 Property and View parameters in the same command.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 Page 4/6

 ------------- Example 1: Format computer services -------------

 Get-Service | Format-List

 This command formats information about services on the computer as a list. By

 default, the services are formatted as a table. The `Get-Service` cmdlet gets

 objects representing the services on the computer. The pipeline operator (`|`)

 passes the results through the pipeline to `Format-List`. Then, the

 `Format-List` command formats the service information in a list and sends it

 to the default output cmdlet for display.

 ---------------- Example 2: Format PS1XML files ----------------

 $A = Get-ChildItem $pshome*.ps1xml

 Format-List -InputObject $A

 The first command gets the objects representing the files and stores them in

 the `$A` variable.

 The second command uses `Format-List` to format information about objects

 stored in `$A`. This command uses the InputObject parameter to pass the

 variable to `Format-List`, which then sends the formatted output to the

 default output cmdlet for display.

 --------- Example 3: Format process properties by name ---------

 Get-Process | Format-List -Property Name, BasePriority, PriorityClass

 It uses the `Get-Process` cmdlet to get an object representing each process.

 The pipeline operator (`|`) passes the process objects through the pipeline to

 `Format-List`. `Format-List` formats the processes as a list of the specified

 properties. The Property parameter name is optional, so you can omit it.

 -------- Example 4: Format all properties for a process --------

 Get-Process winlogon | Format-List -Property * Page 5/6

 It uses the Get-Process cmdlet to get an object representing the Winlogon

 process. The pipeline operator (`|`) passes the Winlogon process object

 through the pipeline to `Format-List`. The command uses the Property parameter

 to specify the properties and the `*` to indicate all properties. Because the

 name of the Property parameter is optional, you can omit it and type the

 command as `Format-List *`. `Format-List` automatically sends the results to

 the default output cmdlet for display.

 ----------- Example 5: Troubleshooting format errors -----------

 PC /> Get-Date | Format-List DayOfWeek,{ $_ / $null } -DisplayError

 DayOfWeek : Friday

 $_ / $null : #ERR

 PC /> Get-Date | Format-List DayOfWeek,{ $_ / $null } -ShowError

 DayOfWeek : Friday

 $_ / $null :

 Failed to evaluate expression " $_ / $null ".

 + CategoryInfo : InvalidArgument: (12/21/2018 7:59:23 AM:PSObject)

 [], RuntimeException

 + FullyQualifiedErrorId : PSPropertyExpressionError

REMARKS

 To see the examples, type: "get-help Format-List -examples".

 For more information, type: "get-help Format-List -detailed".

 For technical information, type: "get-help Format-List -full".

 For online help, type: "get-help Format-List -online"

Page 6/6

