
PowerShell Get-Help on command 'ForEach-Object'

PS C:\Users\wahid> Get-Help ForEach-Object

NAME

 ForEach-Object

SYNOPSIS

 Performs an operation against each item in a collection of input objects.

SYNTAX

 ForEach-Object [-MemberName] <System.String> [-ArgumentList <System.Object[]>]

 [-InputObject <System.Management.Automation.PSObject>] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 ForEach-Object [-Process] <System.Management.Automation.ScriptBlock[]> [-Begin

 <System.Management.Automation.ScriptBlock>] [-End

 <System.Management.Automation.ScriptBlock>] [-InputObject

 <System.Management.Automation.PSObject>] [-RemainingScripts

 <System.Management.Automation.ScriptBlock[]>] [-Confirm] [-WhatIf]

 [<CommonParameters>]

DESCRIPTION
Page 1/10

 The `ForEach-Object` cmdlet performs an operation on each item in a collection

 of input objects. The input objects can be piped to the cmdlet or specified

 using the InputObject parameter.

 Starting in Windows PowerShell 3.0, there are two different ways to construct

 a `ForEach-Object` command.

 - Script block . You can use a script block to specify the operation. Within

 the script block, use the `$_` variable to represent the current object. The

 script block is the value of the Process parameter. The script block can

 contain any PowerShell script.

 For example, the following command gets the value of the ProcessName property

 of each process on the computer.

 `Get-Process | ForEach-Object {$_.ProcessName}`

 `ForEach-Object` supports the `begin`, `process`, and `end` blocks as

 described in about_functions

 (about/about_functions.md#piping-objects-to-functions).

 > [!NOTE] > The script blocks run in the caller's scope. Therefore, the

 blocks have access to variables in > that scope and can create new variables

 that persist in that scope after the cmdlet completes.

 - Operation statement . You can also write an operation statement, which is

 much more like natural language. You can use the operation statement to

 specify a property value or call a method. Operation statements were

 introduced in Windows PowerShell 3.0.

 For example, the following command also gets the value of the ProcessName

 property of each process on the computer.

 Page 2/10

 `Get-Process | ForEach-Object ProcessName`

PARAMETERS

 -ArgumentList <System.Object[]>

 Specifies an array of arguments to a method call. For more information

 about the behavior of ArgumentList , see about_Splatting

 (about/about_Splatting.md#splatting-with-arrays).

 This parameter was introduced in Windows PowerShell 3.0.

 -Begin <System.Management.Automation.ScriptBlock>

 Specifies a script block that runs before this cmdlet processes any input

 objects. This script block is only run once for the entire pipeline. For

 more information about the `begin` block, see about_Functions

 (about/about_functions.md#piping-objects-to-functions).

 -End <System.Management.Automation.ScriptBlock>

 Specifies a script block that runs after this cmdlet processes all input

 objects. This script block is only run once for the entire pipeline. For

 more information about the `end` block, see about_Functions

 (about/about_functions.md#piping-objects-to-functions).

 -InputObject <System.Management.Automation.PSObject>

 Specifies the input objects. `ForEach-Object` runs the script block or

 operation statement on each input object. Enter a variable that contains

 the objects, or type a command or expression that gets the objects.

 When you use the InputObject parameter with `ForEach-Object`, instead of

 piping command results to `ForEach-Object`, the InputObject value is

 treated as a single object. This is true even if the value is a collection

 that's the result of a command, such as `-InputObject (Get-Process)`.

 Because InputObject can't return individual properties from an array or Page 3/10

 collection of objects, we recommend that if you use `ForEach-Object` to

 perform operations on a collection of objects for those objects that have

 specific values in defined properties, you use `ForEach-Object` in the

 pipeline, as shown in the examples in this topic.

 -MemberName <System.String>

 Specifies the name of the member property to get or the member method to

 call. The members must be instance members, not static members.

 Wildcard characters are permitted, but work only if the resulting string

 resolves to a unique value. For example, if you run `Get-Process | ForEach

 -MemberName *Name`, the wildcard pattern matches more than one member

 causing the command to fail.

 This parameter was introduced in Windows PowerShell 3.0.

 -Process <System.Management.Automation.ScriptBlock[]>

 Specifies the operation that's performed on each input object. This script

 block is run for every object in the pipeline. For more information about

 the `process` block, see about_Functions

 (about/about_functions.md#piping-objects-to-functions).

 When you provide multiple script blocks to the Process parameter, the

 first script block is always mapped to the `begin` block. If there are

 only two script blocks, the second block is mapped to the `process` block.

 If there are three or more script blocks, first script block is always

 mapped to the `begin` block, the last block is mapped to the `end` block,

 and the middle blocks are mapped to the `process` block.

 -RemainingScripts <System.Management.Automation.ScriptBlock[]>

 Specifies all script blocks that aren't taken by the Process parameter.

 This parameter was introduced in Windows PowerShell 3.0. Page 4/10

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet isn't run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ------------ Example 1: Divide integers in an array ------------

 30000, 56798, 12432 | ForEach-Object -Process {$_/1024}

 29.296875

 55.466796875

 12.140625

 -- Example 2: Get the length of all the files in a directory --

 Get-ChildItem $PSHOME |

 ForEach-Object -Process {if (!$_.PSIsContainer) {$_.Name; $_.Length / 1024;

 " " }}

 If the object isn't a directory, the script block gets the name of the file,

 divides the value of its Length property by 1024, and adds a space (" ") to

 separate it from the next entry. The cmdlet uses the PSISContainer property to

 determine whether an object is a directory.

 ----- Example 3: Operate on the most recent System events ----- Page 5/10

 Get-EventLog -LogName System -Newest 1000 |

 ForEach-Object -Begin {Get-Date} -Process {

 Out-File -FilePath Events.txt -Append -InputObject $_.Message

 } -End {Get-Date}

 `Get-EventLog` gets the 1000 most recent events from the System event log and

 pipes them to the `ForEach-Object` cmdlet. The Begin parameter displays the

 current date and time. Next, the Process parameter uses the `Out-File` cmdlet

 to create a text file that's named events.txt and stores the message property

 of each of the events in that file. Last, the End parameter is used to display

 the date and time after all the processing has completed.

 -------- Example 4: Change the value of a Registry key --------

 Get-ItemProperty -Path HKCU:\Network* |

 ForEach-Object {

 Set-ItemProperty -Path $_.PSPath -Name RemotePath -Value

 $_.RemotePath.ToUpper()

 }

 You can use this format to change the form or content of a registry entry

 value.

 Each subkey in the Network key represents a mapped network drive that

 reconnects at sign on. The RemotePath entry contains the UNC path of the

 connected drive. For example, if you map the `E:` drive to `\Server\Share`, an

 E subkey is created in `HKCU:\Network` with the RemotePath registry value set

 to `\Server\Share`.

 The command uses the `Get-ItemProperty` cmdlet to get all the subkeys of the

 Network key and the `Set-ItemProperty` cmdlet to change the value of the

 RemotePath registry entry in each key. In the `Set-ItemProperty` command, the

 path is the value of the PSPath property of the registry key. This is a Page 6/10

 property of the Microsoft .NET Framework object that represents the registry

 key, not a registry entry. The command uses the ToUpper() method of the

 RemotePath value, which is a string REG_SZ .

 Because `Set-ItemProperty` is changing the property of each key, the

 `ForEach-Object` cmdlet is required to access the property.

 --------- Example 5: Use the $null automatic variable ---------

 1, 2, $null, 4 | ForEach-Object {"Hello"}

 Hello

 Hello

 Hello

 Hello

 Because PowerShell treats `$null` as an explicit placeholder, the

 `ForEach-Object` cmdlet generates a value for `$null` as it does for other

 objects piped to it.

 ---------------- Example 6: Get property values ----------------

 Get-Module -ListAvailable | ForEach-Object -MemberName Path

 Get-Module -ListAvailable | Foreach Path

 The second command is equivalent to the first. It uses the `Foreach` alias of

 the `ForEach-Object` cmdlet and omits the name of the MemberName parameter,

 which is optional.

 The `ForEach-Object` cmdlet is useful for getting property values, because it

 gets the value without changing the type, unlike the Format cmdlets or the

 `Select-Object` cmdlet, which change the property value type.

 ------ Example 7: Split module names into component names ------

 "Microsoft.PowerShell.Core", "Microsoft.PowerShell.Host" | Page 7/10

 ForEach-Object {$_.Split(".")}

 "Microsoft.PowerShell.Core", "Microsoft.PowerShell.Host" |

 ForEach-Object -MemberName Split -ArgumentList "."

 "Microsoft.PowerShell.Core", "Microsoft.PowerShell.Host" |

 Foreach Split "."

 Microsoft

 PowerShell

 Core

 Microsoft

 PowerShell

 Host

 The first command uses the traditional syntax, which includes a script block

 and the current object operator `$_`. It uses the dot syntax to specify the

 method and parentheses to enclose the delimiter argument.

 The second command uses the MemberName parameter to specify the Split method

 and the ArgumentList parameter to identify the dot (`.`) as the split

 delimiter.

 The third command uses the Foreach alias of the `ForEach-Object` cmdlet and

 omits the names of the MemberName and ArgumentList parameters, which are

 optional.

 ---- Example 8: Using ForEach-Object with two script blocks ----

 1..2 | ForEach-Object { 'begin' } { 'process' }

 begin

 process

 process

 Page 8/10

 Example 9: Using ForEach-Object with more than two script blocks

 1..2 | ForEach-Object { 'begin' } { 'process A' } { 'process B' } { 'end' }

 begin

 process A

 process B

 process A

 process B

 end

 > [!NOTE] > The first script block is always mapped to the `begin` block, the

 last block is mapped to the > `end` block, and the two middle blocks are

 mapped to the `process` block.

 Example 10: Run multiple script blocks for each pipeline item

 1..2 | ForEach-Object -Begin $null -Process { 'one' }, { 'two' }, { 'three' }

 -End $null

 one

 two

 three

 one

 two

 three

REMARKS

 To see the examples, type: "get-help ForEach-Object -examples".

 For more information, type: "get-help ForEach-Object -detailed".

 For technical information, type: "get-help ForEach-Object -full".

 For online help, type: "get-help ForEach-Object -online"

Page 9/10

Page 10/10

