
PowerShell Get-Help on command 'Export-Clixml'

PS C:\Users\wahid> Get-Help Export-Clixml

NAME

    Export-Clixml

    

SYNOPSIS

    Creates an XML-based representation of an object or objects and stores it in a 

    file.

    

    

SYNTAX

    Export-Clixml [-Depth <System.Int32>] [-Encoding {ASCII | BigEndianUnicode | 

    Default | OEM | Unicode | UTF7 | UTF8 | UTF32}] [-Force] -InputObject 

    <System.Management.Automation.PSObject> -LiteralPath <System.String> 

    [-NoClobber] [-Confirm] [-WhatIf] [<CommonParameters>]

    

    Export-Clixml [-Path] <System.String> [-Depth <System.Int32>] [-Encoding 

    {ASCII | BigEndianUnicode | Default | OEM | Unicode | UTF7 | UTF8 | UTF32}] 

    [-Force] -InputObject <System.Management.Automation.PSObject> [-NoClobber] 

    [-Confirm] [-WhatIf] [<CommonParameters>]

    

    

DESCRIPTION
Page 1/6



    The `Export-Clixml` cmdlet serialized an object into a Common Language 

    Infrastructure (CLI) XML-based representation stores it in a file. You can 

    then use the `Import-Clixml` cmdlet to recreate the saved object based on the 

    contents of that file. For more information about CLI, see Language 

    independence (/dotnet/standard/language-independence).

    

    This cmdlet is similar to `ConvertTo-Xml`, except that `Export-Clixml` stores 

    the resulting XML in a file. `ConvertTo-XML` returns the XML, so you can 

    continue to process it in PowerShell.

    

    A valuable use of `Export-Clixml` on Windows computers is to export 

    credentials and secure strings securely as XML. For an example, see Example 3.

    

PARAMETERS

    -Depth <System.Int32>

        Specifies how many levels of contained objects are included in the XML 

        representation. The default value is `2`.

        

        The default value can be overridden for the object type in the 

        `Types.ps1xml` files. For more information, see about_Types.ps1xml 

        (../Microsoft.PowerShell.Core/About/about_Types.ps1xml.md).

        

    -Encoding <System.String>

        Specifies the type of encoding for the target file. The default value is 

        Unicode .

        

        The acceptable values for this parameter are as follows:

        

        - `ASCII` Uses ASCII (7-bit) character set.

        

        - `BigEndianUnicode` Uses UTF-16 with the big-endian byte order.
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        - `Default` Uses the encoding that corresponds to the system's active code 

        page (usually ANSI).

        

        - `OEM` Uses the encoding that corresponds to the system's current OEM 

        code page.

        

        - `Unicode` Uses UTF-16 with the little-endian byte order.

        

        - `UTF7` Uses UTF-7.

        

        - `UTF8` Uses UTF-8.

        

        - `UTF32` Uses UTF-32 with the little-endian byte order.

        

    -Force <System.Management.Automation.SwitchParameter>

        Forces the command to run without asking for user confirmation.

        

        Causes the cmdlet to clear the read-only attribute of the output file if 

        necessary. The cmdlet will attempt to reset the read-only attribute when 

        the command completes.

        

    -InputObject <System.Management.Automation.PSObject>

        Specifies the object to be converted. Enter a variable that contains the 

        objects, or type a command or expression that gets the objects. You can 

        also pipe objects to `Export-Clixml`.

        

    -LiteralPath <System.String>

        Specifies the path to the file where the XML representation of the object 

        will be stored. Unlike Path , the value of the LiteralPath parameter is 

        used exactly as it's typed. No characters are interpreted as wildcards. If 

        the path includes escape characters, enclose it in single quotation marks. 
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    -NoClobber <System.Management.Automation.SwitchParameter>

        Indicates that the cmdlet doesn't overwrite the contents of an existing 

        file. By default, if a file exists in the specified path, `Export-Clixml` 

        overwrites the file without warning.

        

    -Path <System.String>

        Specifies the path to the file where the XML representation of the object 

        will be stored.

        

    -Confirm <System.Management.Automation.SwitchParameter>

        Prompts you for confirmation before running the cmdlet.

        

    -WhatIf <System.Management.Automation.SwitchParameter>

        Shows what would happen if the cmdlet runs. The cmdlet isn't run.

        

    <CommonParameters>

        This cmdlet supports the common parameters: Verbose, Debug,

        ErrorAction, ErrorVariable, WarningAction, WarningVariable,

        OutBuffer, PipelineVariable, and OutVariable. For more information, see 

        about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216). 

    

    ---------- Example 1: Export a string to an XML file ----------

    

    "This is a test" | Export-Clixml -Path .\sample.xml

    

    The string `This is a test` is sent down the pipeline. `Export-Clixml` uses 

    the Path parameter to create an XML file named `sample.xml` in the current 

    directory.

    ---------- Example 2: Export an object to an XML file ----------

    

    Get-Acl C:\test.txt | Export-Clixml -Path .\FileACL.xml
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    The `Get-Acl` cmdlet gets the security descriptor of the `Test.txt` file. It 

    sends the object down the pipeline to pass the security descriptor to 

    `Export-Clixml`. The XML-based representation of the object is stored in a 

    file named `FileACL.xml`.

    

    The `Import-Clixml` cmdlet creates an object from the XML in the `FileACL.xml` 

    file. Then, it saves the object in the `$fileacl` variable.

    ------- Example 3: Encrypt an exported credential object -------

    

    $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

    $Credential | Export-Clixml $Credxmlpath

    $Credxmlpath = Join-Path (Split-Path $Profile) TestScript.ps1.credential

    $Credential = Import-Clixml $Credxmlpath

    

    The `Export-Clixml` cmdlet encrypts credential objects by using the Windows 

    Data Protection API (/previous-versions/windows/apps/hh464970(v=win.10)). The 

    encryption ensures that only your user account on only that computer can 

    decrypt the contents of the credential object. The exported `CLIXML` file 

    can't be used on a different computer or by a different user.

    

    In the example, the file in which the credential is stored is represented by 

    `TestScript.ps1.credential`. Replace TestScript with the name of the script 

    with which you're loading the credential.

    

    You send the credential object down the pipeline to `Export-Clixml`, and save 

    it to the path, `$Credxmlpath`, that you specified in the first command.

    

    To import the credential automatically into your script, run the final two 

    commands. Run `Import-Clixml` to import the secured credential object into 

    your script. This import eliminates the risk of exposing plain-text passwords 

    in your script.
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    To see the examples, type: "get-help Export-Clixml -examples".

    For more information, type: "get-help Export-Clixml -detailed".

    For technical information, type: "get-help Export-Clixml -full".

    For online help, type: "get-help Export-Clixml -online"

Page 6/6


