
PowerShell Get-Help on command 'Enable-PSBreakpoint'

PS C:\Users\wahid> Get-Help Enable-PSBreakpoint

NAME

 Enable-PSBreakpoint

SYNOPSIS

 Enables the breakpoints in the current console.

SYNTAX

 Enable-PSBreakpoint [-Breakpoint] <System.Management.Automation.Breakpoint[]>

 [-PassThru] [-Confirm] [-WhatIf] [<CommonParameters>]

 Enable-PSBreakpoint [-Id] <System.Int32[]> [-PassThru] [-Confirm] [-WhatIf]

 [<CommonParameters>]

DESCRIPTION

 The `Enable-PSBreakpoint` cmdlet re-enables disabled breakpoints. You can use

 it to enable all breakpoints, or specific breakpoints by providing breakpoint

 objects or IDs.

 A breakpoint is a point in a script where execution stops temporarily so that
Page 1/4

 you can examine the state of the script. Newly created breakpoints are

 automatically enabled, but can be disabled using `Disable-PSBreakpoint`.

 Technically, this cmdlet changes the value of the Enabled property of a

 breakpoint object to True .

 `Enable-PSBreakpoint` is one of several cmdlets designed for debugging

 PowerShell scripts. For more information about the PowerShell debugger, see

 about_Debuggers (../Microsoft.PowerShell.Core/About/about_Debuggers.md).

PARAMETERS

 -Breakpoint <System.Management.Automation.Breakpoint[]>

 Specifies the breakpoints to enable. Provide a variable containing

 breakpoints or a command that gets breakpoint objects, such as

 `Get-PSBreakpoint`. You can also pipe breakpoint objects to

 `Enable-PSBreakpoint`.

 -Id <System.Int32[]>

 Specifies the Id numbers of the breakpoints to enable. The default value

 is all breakpoints. Provide the Id by number or in a variable. You can't

 pipe Id numbers to `Enable-PSBreakpoint`. To find the Id of a breakpoint,

 use the `Get-PSBreakpoint` cmdlet.

 -PassThru <System.Management.Automation.SwitchParameter>

 Returns an object representing the breakpoint being enabled. By default,

 this cmdlet doesn't generate any output.

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet isn't run. Page 2/4

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------------- Example 1: Enable all breakpoints --------------

 Get-PSBreakpoint | Enable-PSBreakpoint

 Using aliases, this example can be abbreviated as `gbp | ebp`.

 ------------- Example 2: Enable breakpoints by ID -------------

 Enable-PSBreakpoint -Id 0, 1, 5

 ----------- Example 3: Enable a disabled breakpoint -----------

 $B = Set-PSBreakpoint -Script "sample.ps1" -Variable Name -PassThru

 $B | Enable-PSBreakpoint -PassThru

 AccessMode : Write

 Variable : Name

 Action :

 Enabled : False

 HitCount : 0

 Id : 0

 Script : C:\ps-test\sample.ps1

 ScriptName : C:\ps-test\sample.ps1

 AccessMode : Write

 Variable : Name Page 3/4

 Action :

 Enabled : True

 HitCount : 0

 Id : 0

 Script : C:\ps-test\sample.ps1

 ScriptName : C:\ps-test\sample.ps1

 `Set-PSBreakpoint` creates a breakpoint on the Name variable in the

 `Sample.ps1` script saving the breakpoint object in the `$B` variable. The

 PassThru parameter displays the value of the Enabled property of the

 breakpoint is False .

 `Enable-PSBreakpoint` re-enables the breakpoint. Again, using the PassThru

 parameter we see that the value of the Enabled property is True .

 -------- Example 4: Enable breakpoints using a variable --------

 $B = Get-PSBreakpoint -Id 3, 5

 Enable-PSBreakpoint -Breakpoint $B

 `Get-PSBreakpoint` gets the breakpoints and saves them in the `$B` variable.

 Using the Breakpoint parameter, `Enable-PSBreakpoint` enables the breakpoints.

 This example is equivalent to running `Enable-PSBreakpoint -Id 3, 5`.

REMARKS

 To see the examples, type: "get-help Enable-PSBreakpoint -examples".

 For more information, type: "get-help Enable-PSBreakpoint -detailed".

 For technical information, type: "get-help Enable-PSBreakpoint -full".

 For online help, type: "get-help Enable-PSBreakpoint -online"

Page 4/4

