
PowerShell Get-Help on command 'Disconnect-PSSession'

PS C:\Users\wahid> Get-Help Disconnect-PSSession

NAME

 Disconnect-PSSession

SYNOPSIS

 Disconnects from a session.

SYNTAX

 Disconnect-PSSession [-Id] <System.Int32[]> [-IdleTimeoutSec <System.Int32>]

 [-OutputBufferingMode

 <System.Management.Automation.Runspaces.OutputBufferingMode>] [-ThrottleLimit

 <System.Int32>] [-Confirm] [-WhatIf] [<CommonParameters>]

 Disconnect-PSSession [-IdleTimeoutSec <System.Int32>] -InstanceId

 <System.Guid[]> [-OutputBufferingMode

 <System.Management.Automation.Runspaces.OutputBufferingMode>] [-ThrottleLimit

 <System.Int32>] [-Confirm] [-WhatIf] [<CommonParameters>]

 Disconnect-PSSession [-IdleTimeoutSec <System.Int32>] -Name <System.String[]>

 [-OutputBufferingMode

 <System.Management.Automation.Runspaces.OutputBufferingMode>] [-ThrottleLimit
Page 1/14

 <System.Int32>] [-Confirm] [-WhatIf] [<CommonParameters>]

 Disconnect-PSSession [-Session]

 <System.Management.Automation.Runspaces.PSSession[]> [-IdleTimeoutSec

 <System.Int32>] [-OutputBufferingMode

 <System.Management.Automation.Runspaces.OutputBufferingMode>] [-ThrottleLimit

 <System.Int32>] [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Disconnect-PSSession` cmdlet disconnects a PowerShell session (PSSession

), such as one started by using the `New-PSSession` cmdlet, from the current

 session. As a result, the PSSession is in a disconnected state. You can

 connect to the disconnected PSSession from the current session or from another

 session on the local computer or a different computer.

 The `Disconnect-PSSession` cmdlet disconnects only open PSSessions that are

 connected to the current session. `Disconnect-PSSession` cannot disconnect

 broken or closed PSSessions , or interactive PSSessions started by using the

 `Enter-PSSession` cmdlet, and it cannot disconnect PSSessions that are

 connected to other sessions.

 To reconnect to a disconnected PSSession , use the `Connect-PSSession` or

 `Receive-PSSession` cmdlets.

 When a PSSession is disconnected, the commands in the PSSession continue to

 run until they complete, unless the PSSession times out or the commands in the

 PSSession are blocked by a full output buffer. To change the idle timeout, use

 the IdleTimeoutSec parameter. To change the output buffering mode, use the

 OutputBufferingMode parameter You can also use the InDisconnectedSession

 parameter of the `Invoke-Command` cmdlet to run a command in a disconnected

 session.

 Page 2/14

 For more information about the Disconnected Sessions feature, see

 about_Remote_Disconnected_Sessions

 (./About/about_Remote_Disconnected_Sessions.md).

 This cmdlet is introduced in Windows PowerShell 3.0.

PARAMETERS

 -Id <System.Int32[]>

 Disconnects from sessions with the specified session ID. Type one or more

 IDs (separated by commas), or use the range operator (`..`) to specify a

 range of IDs.

 To get the ID of a session, use the `Get-PSSession` cmdlet. The instance

 ID is stored in the ID property of the session.

 -IdleTimeoutSec <System.Int32>

 Changes the idle timeout value of the disconnected PSSession . Enter a

 value in seconds. The minimum value is `60` (1 minute).

 The idle timeout determines how long the disconnected PSSession is

 maintained on the remote computer. When the timeout expires, the PSSession

 is deleted.

 Disconnected PSSessions are considered to be idle from the moment that

 they are disconnected, even if commands are running in the disconnected

 session.

 The default value for the idle timeout of a session is set by the value of

 the IdleTimeoutMs property of the session configuration. The default value

 is `7200000` milliseconds (2 hours).

 The value of this parameter takes precedence over the value of the Page 3/14

 IdleTimeout property of the `$PSSessionOption` preference variable and the

 default idle timeout value in the session configuration. However, this

 value cannot exceed the value of the MaxIdleTimeoutMs property of the

 session configuration. The default value of MaxIdleTimeoutMs is 12 hours

 (`43200000` milliseconds).

 -InstanceId <System.Guid[]>

 Disconnects from sessions with the specified instance IDs.

 The instance ID is a GUID that uniquely identifies a session on a local or

 remote computer. The instance ID is unique, even across multiple sessions

 on multiple computers.

 To get the instance ID of a session, use the `Get-PSSession` cmdlet. The

 instance ID is stored in the InstanceID property of the session.

 -Name <System.String[]>

 Disconnects from sessions with the specified friendly names. Wildcards are

 permitted.

 To get the friendly name of a session, use the `Get-PSSession` cmdlet. The

 friendly name is stored in the Name property of the session.

 -OutputBufferingMode

 <System.Management.Automation.Runspaces.OutputBufferingMode>

 Determines how command output is managed in the disconnected session when

 the output buffer is full. The default value is `Block`.

 If the command in the disconnected session is returning output and the

 output buffer fills, the value of this parameter effectively determines

 whether the command continues to run while the session is disconnected. A

 value of `Block` suspends the command until the session is reconnected. A

 value of `Drop` allows the command to complete, although data might be Page 4/14

 lost. When using the `Drop` value, redirect the command output to a file

 on disk.

 Valid values are:

 - `Block`: When the output buffer is full, execution is suspended until

 the buffer is clear.

 - `Drop`: When the output buffer is full, execution continues. As new

 output is saved, the oldest

 output is discarded. - `None`: No output buffering mode is specified. The

 value of the OutputBufferingMode property of the session configuration

 is used for the disconnected session.

 -Session <System.Management.Automation.Runspaces.PSSession[]>

 Disconnects from the specified PSSessions . Enter PSSession objects, such

 as those that the `New-PSSession` cmdlet returns. You can also pipe a

 PSSession object to `Disconnect-PSSession`.

 The `Get-PSSession` cmdlet can get all PSSessions that terminate at a

 remote computer, including PSSessions that are disconnected and PSSessions

 that are connected to other sessions on other computers.

 `Disconnect-PSSession` disconnects only PSSession that are connected to

 the current session. If you pipe other PSSessions to

 `Disconnect-PSSession`, the `Disconnect-PSSession` command fails.

 -ThrottleLimit <System.Int32>

 Sets the throttle limit for the `Disconnect-PSSession` command.

 The throttle limit is the maximum number of concurrent connections that

 can be established to run this command. If you omit this parameter or

 enter a value of `0`, the default value, `32`, is used. Page 5/14

 The throttle limit applies only to the current command, not to the session

 or to the computer.

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ----------- Example 1 - Disconnect a session by name -----------

 PS> Disconnect-PSSession -Name UpdateSession

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 UpdateSession Server01 Disconnected Microsoft.PowerShell

 None

 The output shows that the attempt to disconnect was successful. The session

 state is `Disconnected` and the Availability is `None`, which indicates that

 the session is not busy and can be reconnected.

 -- Example 2 - Disconnect a session from a specific computer --

 PS> Get-PSSession -ComputerName Server12 -Name ITTask |

 Disconnect-PSSession -OutputBufferingMode Drop -IdleTimeoutSec 86400 Page 6/14

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 ITTask Server12 Disconnected ITTasks None

 The `Disconnect-PSSession` command uses the OutputBufferingMode parameter to

 set the output mode to `Drop`. This setting ensures that the script that is

 running in the session can continue to run even if the session output buffer

 is full. Because the script writes its output to a report on a file share,

 other output can be lost without consequence.

 The command also uses the IdleTimeoutSec parameter to extend the idle timeout

 of the session to 24 hours. This setting allows time for this administrator or

 other administrators to reconnect to the session to verify that the script ran

 and troubleshoot if needed.

 - Example 3 - Using multiple PSSessions on multiple computers -

 PS> $s = New-PSSession -ComputerName Srv1, Srv2, Srv30 -Name ITTask

 PS> Invoke-Command $s -FilePath \\Server01\Scripts\Get-PatchStatus.ps1

 PS> Get-PSSession -Name ITTask -ComputerName Srv1 | Disconnect-PSSession

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 ITTask Srv1 Disconnected Microsoft.PowerShell

 None

 PS> Get-PSSession -ComputerName Srv1, Srv2, Srv30 -Name ITTask

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 ------------ Page 7/14

 1 ITTask Srv1 Disconnected Microsoft.PowerShell

 None

 2 ITTask Srv2 Opened Microsoft.PowerShell

 Available

 3 ITTask Srv30 Opened Microsoft.PowerShell

 Available

 PS> Get-PSSession -ComputerName Srv1 -Name ITTask -Credential Domain01\User01

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 ITTask Srv1 Disconnected Microsoft.PowerShell

 None

 PS> $s = Connect-PSSession -ComputerName Srv1 -Name ITTask -Credential

 Domain01\User01

 PS> Invoke-Command -Session $s {dir $HOME\Scripts\PatchStatusOutput.ps1}

 PS> Invoke-Command -Session $s {mkdir $HOME\Scripts\PatchStatusOutput}

 PS> Invoke-Command -Session $s -FilePath \\Server01\Scripts\Get-PatchStatus.ps1

 PS> Disconnect-PSSession -Session $s

 The technician begins by creating sessions on several remote computers and

 running a script in each session. The first command uses the `New-PSSession`

 cmdlet to create the `ITTask` session on three remote computers. The command

 saves the sessions in the `$s` variable. The second command uses the FilePath

 parameter of the `Invoke-Command` cmdlet to run a script in the sessions in

 the `$s` variable.

 The script running on the Srv1 computer generates unexpected errors. The

 technician contacts his manager and asks for assistance. The manager directs

 the technician to disconnect from the session so he can investigate.The second

 command uses the `Get-PSSession` cmdlet to get the `ITTask` session on the Page 8/14

 Srv1 computer and the `Disconnect-PSSession` cmdlet to disconnect it. This

 command does not affect the `ITTask` sessions on the other computers.

 The third command uses the `Get-PSSession` cmdlet to get the `ITTask`

 sessions. The output shows that the `ITTask` sessions on the Srv2 and Srv30

 computers were not affected by the command to disconnect.

 The manager logs on to his home computer, connects to his corporate network,

 starts PowerShell, and uses the `Get-PSSession` cmdlet to get the `ITTask`

 session on the Srv1 computer. He uses the credentials of the technician to

 access the session.

 Next, the manager uses the `Connect-PSSession` cmdlet to connect to the

 `ITTask` session on the Srv1 computer. The command saves the session in the

 `$s` variable.

 The manager uses the `Invoke-Command` cmdlet to run some diagnostic commands

 in the session in the `$s` variable. He recognizes that the script failed

 because it did not find a required directory. The manager uses the `MkDir`

 function to create the directory, and then he restarts the

 `Get-PatchStatus.ps1` script and disconnects from the session.The manager

 reports his findings to the technician, suggests that he reconnect to the

 session to complete the tasks, and asks him to add a command to the

 `Get-PatchStatus.ps1` script that creates the required directory if it does

 not exist.

 ----- Example 4 - Change the timeout value for a PSSession -----

 PS> $Timeout = New-PSSessionOption -IdleTimeout 172800000

 PS> $s = New-PSSession -Computer Server01 -Name ITTask -SessionOption $Timeout

 PS> Disconnect-PSSession -Session $s

 Disconnect-PSSession : The session ITTask cannot be disconnected because the

 specified

 idle timeout value 172800(seconds) is either greater than the server maximum Page 9/14

 allowed

 43200 (seconds) or less that the minimum allowed60(seconds). Choose an idle

 time out

 value that is within the allowed range and try again.

 PS> Invoke-Command -ComputerName Server01 {Get-PSSessionConfiguration

 Microsoft.PowerShell} |

 Format-List -Property *

 Architecture : 64

 Filename : %windir%\system32\pwrshplugin.dll

 ResourceUri :

 http://schemas.microsoft.com/powershell/microsoft.powershell

 MaxConcurrentCommandsPerShell : 1000

 UseSharedProcess : false

 ProcessIdleTimeoutSec : 0

 xmlns :

 http://schemas.microsoft.com/wbem/wsman/1/config/PluginConfiguration

 MaxConcurrentUsers : 5

 lang : en-US

 SupportsOptions : true

 ExactMatch : true

 RunAsUser :

 IdleTimeoutms : 7200000

 PSVersion : 3.0

 OutputBufferingMode : Block

 AutoRestart : false

 SecurityDescriptorSddl :

 O:NSG:BAD:P(A;;GA;;;BA)S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD)

 MaxMemoryPerShellMB : 1024

 MaxIdleTimeoutms : 2147483647

 Uri :

 http://schemas.microsoft.com/powershell/microsoft.powershell Page 10/14

 SDKVersion : 2

 Name : microsoft.powershell

 XmlRenderingType : text

 Capability : {Shell}

 RunAsPassword :

 MaxProcessesPerShell : 15

 ParentResourceUri :

 http://schemas.microsoft.com/powershell/microsoft.powershell

 Enabled : true

 MaxShells : 25

 MaxShellsPerUser : 25

 Permission : BUILTIN\Administrators AccessAllowed

 PSComputerName : localhost

 RunspaceId : aea84310-6dbf-4c21-90ac-13980039925a

 PSShowComputerName : True

 PS> $s.Runspace.ConnectionInfo

 ConnectionUri : http://Server01/wsman

 ComputerName : Server01

 Scheme : http

 Port : 80

 AppName : /wsman

 Credential :

 ShellUri :

 http://schemas.microsoft.com/powershell/Microsoft.PowerShell

 AuthenticationMechanism : Default

 CertificateThumbprint :

 MaximumConnectionRedirectionCount : 5

 MaximumReceivedDataSizePerCommand :

 MaximumReceivedObjectSize : 209715200

 UseCompression : True

 NoMachineProfile : False Page 11/14

 ProxyAccessType : None

 ProxyAuthentication : Negotiate

 ProxyCredential :

 SkipCACheck : False

 SkipCNCheck : False

 SkipRevocationCheck : False

 NoEncryption : False

 UseUTF16 : False

 OutputBufferingMode : Drop

 IncludePortInSPN : False

 Culture : en-US

 UICulture : en-US

 OpenTimeout : 180000

 CancelTimeout : 60000

 OperationTimeout : 180000

 IdleTimeout : 172800000

 PS> Disconnect-PSSession $s -IdleTimeoutSec 43200

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 4 ITTask Server01 Disconnected Microsoft.PowerShell

 None

 PS> $s.Runspace.ConnectionInfo.IdleTimeout

 43200000

 The first command uses the `New-PSSessionOption` cmdlet to create a session

 option object. It uses the IdleTimeout parameter to set an idle timeout of 48

 hours (`172800000` milliseconds). The command saves the session option object

 in the `$Timeout` variable.

 Page 12/14

 The second command uses the `New-PSSession` cmdlet to create the `ITTask`

 session on the Server01 computer. The command save the session in the `$s`

 variable. The value of the SessionOption parameter is the 48-hour idle timeout

 in the `$Timeout` variable.

 The third command disconnects the `ITTask` session in the `$s` variable. The

 command fails because the idle timeout value of the session exceeds the

 MaxIdleTimeoutMs quota in the session configuration. Because the idle timeout

 is not used until the session is disconnected, this violation can go

 undetected while the session is in use.

 The fourth command uses the `Invoke-Command` cmdlet to run a

 `Get-PSSessionConfiguration` command for the `Microsoft.PowerShell` session

 configuration on the Server01 computer. The command uses the `Format-List`

 cmdlet to display all properties of the session configuration in a list.The

 output shows that the MaxIdleTimeoutMS property, which establishes the maximum

 permitted IdleTimeout value for sessions that use the session configuration,

 is `43200000` milliseconds (12 hours).

 The fifth command gets the session option values of the session in the `$s`

 variable. The values of many session options are properties of the

 ConnectionInfo property of the Runspace property of the session.The output

 shows that the value of the IdleTimeout property of the session is `172800000`

 milliseconds (48 hours), which violates the MaxIdleTimeoutMs quota of 12 hours

 in the session configuration.To resolve this conflict, you can use the

 ConfigurationName parameter to select a different session configuration or use

 the IdleTimeout parameter to reduce the idle timeout of the session.

 The sixth command disconnects the session. It uses the IdleTimeoutSec

 parameter to set the idle timeout to the 12-hour maximum.

 The seventh command gets the value of the IdleTimeout property of the

 disconnected session, which is measured in milliseconds. The output confirms Page 13/14

 that the command was successful.

REMARKS

 To see the examples, type: "get-help Disconnect-PSSession -examples".

 For more information, type: "get-help Disconnect-PSSession -detailed".

 For technical information, type: "get-help Disconnect-PSSession -full".

 For online help, type: "get-help Disconnect-PSSession -online"

Page 14/14

