
PowerShell Get-Help on command 'Debug-Process'

PS C:\Users\wahid> Get-Help Debug-Process

NAME

 Debug-Process

SYNOPSIS

 Debugs one or more processes running on the local computer.

SYNTAX

 Debug-Process [-Id] <System.Int32[]> [-Confirm] [-WhatIf] [<CommonParameters>]

 Debug-Process -InputObject <System.Diagnostics.Process[]> [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Debug-Process [-Name] <System.String[]> [-Confirm] [-WhatIf]

 [<CommonParameters>]

DESCRIPTION

 The `Debug-Process` cmdlet attaches a debugger to one or more running

 processes on a local computer. You can specify the processes by their process

 name or process ID (PID), or you can pipe process objects to this cmdlet.
Page 1/5

 This cmdlet attaches the debugger that is currently registered for the

 process. Before using this cmdlet, verify that a debugger is downloaded and

 correctly configured.

PARAMETERS

 -Id <System.Int32[]>

 Specifies the process IDs of the processes to be debugged. The Id

 parameter name is optional.

 To find the process ID of a process, type `Get-Process`.

 -InputObject <System.Diagnostics.Process[]>

 Specifies the process objects that represent processes to be debugged.

 Enter a variable that contains the process objects or a command that gets

 the process objects, such as the `Get-Process` cmdlet. You can also pipe

 process objects to this cmdlet.

 -Name <System.String[]>

 Specifies the names of the processes to be debugged. If there is more than

 one process with the same name, this cmdlet attaches a debugger to all

 processes with that name. The Name parameter is optional.

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable, Page 2/5

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -- Example 1: Attach a debugger to a process on the computer --

 PS C:\> Debug-Process -Name "Windows Powershell"

 This command attaches a debugger to the PowerShell process on the computer.

 Example 2: Attach a debugger to all processes that begin with the specified

 string

 PS C:\> Debug-Process -Name "SQL*"

 This command attaches a debugger to all processes that have names that begin

 with SQL.

 ------ Example 3: Attach a debugger to multiple processes ------

 PS C:\> Debug-Process "Winlogon", "Explorer", "Outlook"

 This command attaches a debugger to the Winlogon, Explorer, and Outlook

 processes.

 ----- Example 4: Attach a debugger to multiple process IDs -----

 PS C:\> Debug-Process -Id 1132, 2028

 This command attaches a debugger to the processes that have process IDs 1132

 and 2028.

 Example 5: Use Get-Process to get a process then attach a debugger to it

 PS C:\> Get-Process "Windows PowerShell" | Debug-Process

 This command attaches a debugger to the PowerShell processes on the computer.

 It uses the `Get-Process` cmdlet to get the PowerShell processes on the Page 3/5

 computer, and it uses a pipeline operator (`|`) to send the processes to the

 `Debug-Process` cmdlet.

 To specify a particular PowerShell process, use the ID parameter of

 `Get-Process`.

 Example 6: Attach a debugger to a current process on the local computer

 PS C:\> $PID | Debug-Process

 This command attaches a debugger to the current PowerShell processes on the

 computer.

 The command uses the `$PID` automatic variable, which contains the process ID

 of the current PowerShell process. Then, it uses a pipeline operator (`|`) to

 send the process ID to the `Debug-Process` cmdlet.

 For more information about the `$PID` automatic variable, see

 about_Automatic_Variables

 (../Microsoft.PowerShell.Core/About/about_Automatic_Variables.md).

 Example 7: Attach a debugger to the specified process on multiple computers

 PS C:\> Get-Process -ComputerName "Server01", "Server02" -Name "MyApp" |

 Debug-Process

 This command attaches a debugger to the MyApp processes on the Server01 and

 Server02 computers.

 The command uses the `Get-Process` cmdlet to get the MyApp processes on the

 Server01 and Server02 computers. It uses a pipeline operator to send the

 processes to the `Debug-Process` cmdlet, which attaches the debuggers.

 Example 8: Attach a debugger to a process that uses the InputObject parameter

 PS C:\> $P = Get-Process "Windows PowerShell" Page 4/5

 PS C:\> Debug-Process -InputObject $P

 This command attaches a debugger to the PowerShell processes on the local

 computer.

 The first command uses the `Get-Process` cmdlet to get the PowerShell

 processes on the computer. It saves the resulting process object in the

 variable named `$P`.

 The second command uses the InputObject parameter of the `Debug-Process`

 cmdlet to submit the process object in the `$P` variable.

REMARKS

 To see the examples, type: "get-help Debug-Process -examples".

 For more information, type: "get-help Debug-Process -detailed".

 For technical information, type: "get-help Debug-Process -full".

 For online help, type: "get-help Debug-Process -online"

Page 5/5

