
PowerShell Get-Help on command 'Copy-Item'

PS C:\Users\wahid> Get-Help Copy-Item

NAME

 Copy-Item

SYNOPSIS

 Copies an item from one location to another.

SYNTAX

 Copy-Item [[-Destination] <System.String>] [-Container] [-Credential

 <System.Management.Automation.PSCredential>] [-Exclude <System.String[]>]

 [-Filter <System.String>] [-Force] [-FromSession

 <System.Management.Automation.Runspaces.PSSession>] [-Include

 <System.String[]>] -LiteralPath <System.String[]> [-PassThru] [-Recurse]

 [-ToSession <System.Management.Automation.Runspaces.PSSession>]

 [-UseTransaction] [-Confirm] [-WhatIf] [<CommonParameters>]

 Copy-Item [-Path] <System.String[]> [[-Destination] <System.String>]

 [-Container] [-Credential <System.Management.Automation.PSCredential>]

 [-Exclude <System.String[]>] [-Filter <System.String>] [-Force] [-FromSession

 <System.Management.Automation.Runspaces.PSSession>] [-Include

 <System.String[]>] [-PassThru] [-Recurse] [-ToSession
Page 1/10

 <System.Management.Automation.Runspaces.PSSession>] [-UseTransaction]

 [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Copy-Item` cmdlet copies an item from one location to another location in

 the same namespace. For instance, it can copy a file to a folder, but it can't

 copy a file to a certificate drive.

 This cmdlet doesn't cut or delete the items being copied. The particular items

 that the cmdlet can copy depend on the PowerShell provider that exposes the

 item. For instance, it can copy files and directories in a file system drive

 and registry keys and entries in the registry drive.

 This cmdlet can copy and rename items in the same command. To rename an item,

 enter the new name in the value of the Destination parameter. To rename an

 item and not copy it, use the `Rename-Item` cmdlet.

PARAMETERS

 -Container <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet preserves container objects during the copy

 operation. By default, the Container parameter is set to True .

 -Credential <System.Management.Automation.PSCredential>

 > [!NOTE] > This parameter isn't supported by any providers installed with

 PowerShell. > To impersonate another user, or elevate your credentials

 when running this cmdlet, > use Invoke-Command

 (../Microsoft.PowerShell.Core/Invoke-Command.md).

 -Destination <System.String>

 Specifies the path to the new location. The default is the current

 directory. Page 2/10

 To rename the item being copied, specify a new name in the value of the

 Destination parameter.

 -Exclude <System.String[]>

 Specifies one or more path elements or patterns, such as `"*.txt"`, to

 limit this cmdlet's operation. The value of this parameter filters against

 the wildcard-matching result of the Path parameter, not the final results.

 This parameter is only effective when the Path is specified with one or

 more wildcards. Since this parameter only filters on the paths resolved

 for the Path parameter, it doesn't filter any items discovered when

 recursing through child folders with the Recurse parameter.

 -Filter <System.String>

 Specifies a filter to qualify the Path parameter. The FileSystem

 (../Microsoft.PowerShell.Core/About/about_FileSystem_Provider.md)provider

 is the only installed PowerShell provider that supports the use of

 filters. You can find the syntax for the FileSystem filter language in

 about_Wildcards (../Microsoft.PowerShell.Core/About/about_Wildcards.md).

 Filters are more efficient than other parameters, because the provider

 applies them when the cmdlet gets the objects rather than having

 PowerShell filter the objects after they're retrieved.

 -Force <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet copies items that can't otherwise be changed,

 such as copying over a read-only file or alias.

 -FromSession <System.Management.Automation.Runspaces.PSSession>

 This is a dynamic parameter made available by the FileSystem provider.

 Specify the PSSession object from which a remote file is being copied.

 When you use this parameter, the Path and LiteralPath parameters refer to

 the local path on the remote machine. Page 3/10

 For more information, see about_FileSystem_Provider

 (../Microsoft.PowerShell.Core/About/about_FileSystem_Provider.md).

 -Include <System.String[]>

 Specifies one or more path elements or patterns, such as `"*.txt"`, to

 limit this cmdlet's operation. The value of this parameter filters against

 the wildcard-matching result of the Path parameter, not the final results.

 This parameter is only effective when the Path is specified with one or

 more wildcards. Since this parameter only filters on the paths resolved

 for the Path parameter, it doesn't filter any items discovered when

 recursing through child folders with the Recurse parameter.

 -LiteralPath <System.String[]>

 Specifies a path to one or more locations. The value of LiteralPath is

 used exactly as it's typed. No characters are interpreted as wildcards. If

 the path includes escape characters, enclose it in single quotation marks.

 Single quotation marks tell PowerShell not to interpret any characters as

 escape sequences.

 For more information, see about_Quoting_Rules

 (../Microsoft.Powershell.Core/About/about_Quoting_Rules.md).

 -PassThru <System.Management.Automation.SwitchParameter>

 Returns an object that represents the item with which you're working. By

 default, this cmdlet doesn't generate any output.

 -Path <System.String[]>

 Specifies, as a string array, the path to the items to copy. Wildcard

 characters are permitted.

 -Recurse <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet does a recursive copy. Page 4/10

 -ToSession <System.Management.Automation.Runspaces.PSSession>

 This is a dynamic parameter made available by the FileSystem provider.

 Specify the PSSession object to which a remote file is being copied. When

 you use this parameter, the Destination parameter refers to the local path

 on the remote machine.

 For more information, see about_FileSystem_Provider

 (../Microsoft.PowerShell.Core/About/about_FileSystem_Provider.md).

 -UseTransaction <System.Management.Automation.SwitchParameter>

 Includes the command in the active transaction. This parameter is valid

 only when a transaction is in progress. For more information, see

 about_Transactions

 (../Microsoft.PowerShell.Core/About/about_Transactions.md).

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet isn't run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ------ Example 1: Copy a file to the specified directory ------

 Copy-Item "C:\Wabash\Logfiles\mar1604.log.txt" -Destination "C:\Presentation"

 Page 5/10

 - Example 2: Copy directory contents to an existing directory -

 Copy-Item -Path "C:\Logfiles*" -Destination "C:\Drawings" -Recurse

 > [!NOTE] > If the path `C:\Drawings` doesn't exist the cmdlet copies all the

 files from the `Logfiles` > folder into a single file `C:\Drawings`.

 -- Example 3: Copy directory and contents to a new directory --

 Copy-Item -Path "C:\Logfiles" -Destination "C:\Drawings\Logs" -Recurse

 > [!NOTE] > If the Path includes `*`, all the directory's file contents,

 including the subdirectory > trees, are copied to the new destination

 directory. For example: > > `Copy-Item -Path "C:\Logfiles*" -Destination

 "C:\Drawings\Logs" -Recurse`

 Example 4: Copy a file to the specified directory and rename the file

 Copy-Item "\\Server01\Share\Get-Widget.ps1" -Destination

 "\\Server12\ScriptArchive\Get-Widget.ps1.txt"

 --------- Example 5: Copy a file to a remote computer ---------

 $Session = New-PSSession -ComputerName "Server01" -Credential "Contoso\User01"

 Copy-Item "D:\Folder001\test.log" -Destination "C:\Folder001_Copy\" -ToSession

 $Session

 -------- Example 6: Copy a folder to a remote computer --------

 $Session = New-PSSession -ComputerName "Server02" -Credential "Contoso\User01"

 Copy-Item "D:\Folder002\" -Destination "C:\Folder002_Copy\" -ToSession $Session

 Page 6/10

 Example 7: Recursively copy the entire contents of a folder to a remote

 computer

 $Session = New-PSSession -ComputerName "Server04" -Credential "Contoso\User01"

 Copy-Item "D:\Folder003\" -Destination "C:\Folder003_Copy\" -ToSession

 $Session -Recurse

 Example 8: Copy a file to a remote computer and then rename the file

 $Session = New-PSSession -ComputerName "Server04" -Credential "Contoso\User01"

 Copy-Item "D:\Folder004\scriptingexample.ps1" -Destination

 "C:\Folder004_Copy\scriptingexample_copy.ps1" -ToSession $Session

 ----- Example 9: Copy a remote file to the local computer -----

 $Session = New-PSSession -ComputerName "Server01" -Credential "Contoso\User01"

 Copy-Item "C:\MyRemoteData\test.log" -Destination "D:\MyLocalData\"

 -FromSession $Session

 Example 10: Copy the entire contents of a remote folder to the local computer

 $Session = New-PSSession -ComputerName "Server01" -Credential "Contoso\User01"

 Copy-Item "C:\MyRemoteData\scripts" -Destination "D:\MyLocalData\"

 -FromSession $Session

 Example 11: Recursively copy the entire contents of a remote folder to the

 local computer

 Page 7/10

 $Session = New-PSSession -ComputerName "Server01" -Credential "Contoso\User01"

 Copy-Item "C:\MyRemoteData\scripts" -Destination "D:\MyLocalData\scripts"

 -FromSession $Session -Recurse

 Example 12: Recursively copy files from a folder tree into the current folder

 PS C:\temp\test> (Get-ChildItem C:\temp\tree -Recurse).FullName

 C:\temp\tree\subfolder

 C:\temp\tree\file1.txt

 C:\temp\tree\file2.txt

 C:\temp\tree\file3.txt

 C:\temp\tree\subfolder\file3.txt

 C:\temp\tree\subfolder\file4.txt

 C:\temp\tree\subfolder\file5.txt

 PS C:\temp\test> Get-Content C:\temp\tree\file3.txt

 This is file3.txt in the root folder

 PS C:\temp\test> Get-Content C:\temp\tree\subfolder\file3.txt

 This is file3.txt in the subfolder

 PS C:\temp\test> Copy-Item -Path C:\temp\tree -Filter *.txt -Recurse

 -Container:$false

 PS C:\temp\test> (Get-ChildItem . -Recurse).FullName

 C:\temp\test\subfolder

 C:\temp\test\file1.txt

 C:\temp\test\file2.txt

 C:\temp\test\file3.txt

 C:\temp\test\file4.txt

 C:\temp\test\file5.txt

 PS C:\temp\test> Get-Content .\file3.txt Page 8/10

 This is file3.txt in the subfolder

 The `Copy-Item` cmdlet has the Container parameter set to `$false`. This

 causes the contents of the source folder to be copied but doesn't preserve the

 folder structure. Notice that files with the same name are overwritten in the

 destination folder.

 -- Example 13: Using filters to copy items without recursion --

 PS D:\temp\test\out> Copy-Item -Path D:\temp\tree* -Include ex*

 PS D:\temp\test\out> (Get-ChildItem -Recurse).FullName

 D:\temp\out\examples

 D:\temp\out\example.ps1

 D:\temp\out\example.txt

 The Include parameter is applied to the contents of `D:\temp\tree` folder to

 copy all items that match `ex*`. Notice that, without recursion, the

 `D:\temp\out\examples` folder is copied, but none of its contents are copied.

 ---- Example 14: Using filters to copy items with recursion ----

 D:\temp\out> Copy-Item -Path D:\temp\tree* -Include ex* -Recurse

 D:\temp\out> (Get-ChildItem -Recurse).FullName

 D:\temp\out\examples

 D:\temp\out\example.ps1

 D:\temp\out\example.txt

 D:\temp\out\examples\subfolder

 D:\temp\out\examples\example_1.txt

 D:\temp\out\examples\example_2.txt

 D:\temp\out\examples\subfolder\test.txt

 The Include parameter is applied to the contents of `D:\temp\tree` folder to

 copy all items that match `ex*`. Notice that, with recursion, the

 `D:\temp\out\examples` folder is copied along with all the files and

 subfolders. The copy includes files that do not match the include filter. When Page 9/10

 using `Copy-Item`, the filters only apply to the top-level specified by the

 Path parameter. Then recursion is applied to those matching items.

 > [!NOTE] > The behavior of the Exclude parameter is the same as described in

 this example, except that > it limits the operation to only those paths that

 don't match the pattern.

 Example 15: Limit the files to recursively copy from a wildcard-specified path

 D:\temp\out> Get-ChildItem -Path D:\temp\tree -Recurse -Filter ex* | Copy-Item

 D:\temp\out> (Get-ChildItem -Recurse).FullName

 D:\temp\out\examples

 D:\temp\out\example_1.txt

 D:\temp\out\example_2.txt

 D:\temp\out\example.ps1

 D:\temp\out\example.txt

 Unlike the `Copy-Item`, the Filter parameter for `Get-ChildItem` applies to

 the items discovered during recursion. This enables you to find, filter, and

 then copy items recursively.

REMARKS

 To see the examples, type: "get-help Copy-Item -examples".

 For more information, type: "get-help Copy-Item -detailed".

 For technical information, type: "get-help Copy-Item -full".

 For online help, type: "get-help Copy-Item -online"

Page 10/10

