
PowerShell Get-Help on command 'ConvertFrom-String'

PS C:\Users\wahid> Get-Help ConvertFrom-String

NAME

 ConvertFrom-String

SYNOPSIS

 Extracts and parses structured properties from string content.

SYNTAX

 ConvertFrom-String [-InputObject] <System.String> [-Delimiter <System.String>]

 [-PropertyNames <System.String[]>] [<CommonParameters>]

 ConvertFrom-String [-InputObject] <System.String> [-IncludeExtent]

 [-TemplateContent <System.String[]>] [-TemplateFile <System.String[]>]

 [-UpdateTemplate] [<CommonParameters>]

DESCRIPTION

 The `ConvertFrom-String` cmdlet extracts and parses structured properties from

 string content. This cmdlet generates an object by parsing text from a

 traditional text stream. For each string in the pipeline, the cmdlet splits

 the input by either a delimiter or a parse expression, and then assigns
Page 1/9

 property names to each of the resulting split elements. You can provide these

 property names; if you do not, they are automatically generated for you.

 The cmdlet's default parameter set, ByDelimiter , splits exactly on the

 regular expression delimiter. It does not perform quote matching or delimiter

 escaping as the `Import-Csv` cmdlet does.

 The cmdlet's alternate parameter set, TemplateParsing , generates elements

 from the groups that are captured by a regular expression. For more

 information on regular expressions, see about_Regular_Expressions

 (../Microsoft.PowerShell.Core/About/about_Regular_Expressions.md).

 This cmdlet supports two modes: basic delimited parsing, and

 automatically-generated, example-driven parsing.

 Delimited parsing, by default, splits the input at white space, and assigns

 property names to the resulting groups.

 You can customize the delimiter by piping the `ConvertFrom-String` results

 into one of the `Format- ` cmdlets, or you can use the Delimiter * parameter.

 The cmdlet also supports automatically-generated, example-driven parsing based

 on the FlashExtract, research work by Microsoft Research (https://www.microsoft

 .com/research/publication/flashextract-framework-data-extraction-examples/).

PARAMETERS

 -Delimiter <System.String>

 Specifies a regular expression that identifies the boundary between

 elements. Elements that are created by the split become properties in the

 resulting object. The delimiter is ultimately used in a call to the Split

 method of the type `[System.Text.RegularExpressions.RegularExpression]`.

 Page 2/9

 -IncludeExtent <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet includes an extent text property that is

 removed by default.

 -InputObject <System.String>

 Specifies strings received from the pipeline, or a variable that contains

 a string object.

 -PropertyNames <System.String[]>

 Specifies an array of property names to which to assign split values in

 the resulting object. Every line of text that you split or parse generates

 elements that represent property values. If the element is the result of a

 capture group, and that capture group is named (for example, `(?<name>)`

 or `(?'name')`), then the name of that capture group is assigned to the

 property.

 If you provide any elements in the PropertyName array, those names are

 assigned to properties that have not yet been named.

 If you provide more property names than there are fields, PowerShell

 ignores the extra property names. If you do not specify enough property

 names to name all fields, PowerShell automatically assigns numerical

 property names to any properties that are not named: P1 , P2 , etc.

 -TemplateContent <System.String[]>

 Specifies an expression, or an expression saved as a variable, that

 describes the properties to which this cmdlet assigns strings. The syntax

 of a template field specification is the following:

 `{[optional-typecast]<name>:<example-value>}`.

 -TemplateFile <System.String[]>

 Specifies a file, as an array, that contains a template for the desired

 parsing of the string. In the template file, properties and their values Page 3/9

 are enclosed in brackets, as shown below. If a property, such as the Name

 property and its associated other properties, appears multiple times, you

 can add an asterisk (`*`) to indicate that this results in multiple

 records. This avoids extracting multiple properties into a single record.

 {Name*:David Chew}

 {City:Redmond}, {State:WA}

 {Name*:Evan Narvaez} {Name*:Antonio Moreno}

 {City:Issaquah}, {State:WA}

 -UpdateTemplate <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet saves the results of a learning algorithm into

 a comment in the template file. This makes the algorithm learning process

 faster. To use this parameter, you must also specify a template file with

 the TemplateFile parameter.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -- Example 1: Generate an object with default property names --

 "Hello World" | ConvertFrom-String

 P1 P2

 -- --

 Hello World Page 4/9

 This command generates an object with default property names, P1 and P2 .

 --------- Example 1A: Get to know the generated object ---------

 "Hello World" | ConvertFrom-String | Get-Member

 TypeName: System.Management.Automation.PSCustomObject

 Name MemberType Definition

 ---- ---------- ----------

 Equals Method bool Equals(System.Object obj)

 GetHashCode Method int GetHashCode()

 GetType Method type GetType()

 ToString Method string ToString()

 P1 NoteProperty string P1=Hello

 P2 NoteProperty string P2=World

 Example 2: Generate an object with default property names using a delimiter

 "Contoso\Administrator" | ConvertFrom-String -Delimiter "\\"

 P1 P2

 -- --

 Contoso Administrator

 Example 3: Generate an object that contains two named properties

 $content = Get-Content C:\Windows\System32\drivers\etc\hosts

 $content = $content -match "^[^#]"

 $content | ConvertFrom-String -PropertyNames IP, Server

 Page 5/9

 IP Server

 -- ------

 192.168.7.10 W2012R2

 192.168.7.20 W2016

 192.168.7.101 WIN8

 192.168.7.102 WIN10

 The `Get-Content` cmdlet stores the content of a Windows hosts file in

 `$content`. The second command removes any comments at the beginning of the

 hosts file using a regular expression that matches any line that does not

 start with (`#`). The last command converts the remaining text into objects

 with Server and IP properties.

 Example 4: Use an expression as the value of the TemplateContent parameter,

 save the results in a variable.

 $template = @'

 {Name*:Phoebe Cat}, {phone:425-123-6789}, {age:6}

 {Name*:Lucky Shot}, {phone:(206) 987-4321}, {age:12}

 '@

 $testText = @'

 Phoebe Cat, 425-123-6789, 6

 Lucky Shot, (206) 987-4321, 12

 Elephant Wise, 425-888-7766, 87

 Wild Shrimp, (111) 222-3333, 1

 '@

 $PersonalData = $testText | ConvertFrom-String -TemplateContent $template

 Write-output ("Pet items found: " + ($PersonalData.Count))

 $PersonalData

 Pet items found: 4

 Page 6/9

 Name phone age

 ---- ----- ---

 Phoebe Cat 425-123-6789 6

 Lucky Shot (206) 987-4321 12

 Elephant Wise 425-888-7766 87

 Wild Shrimp (111) 222-3333 1

 Each line in the input is evaluated by the sample matches. If the line matches

 the examples given in the pattern, values are extracted and passed to the

 output variable.

 The sample data, `$template`, provides two different phone formats:

 - `425-123-6789`

 - `(206) 987-4321`

 The sample data also provides two different age formats:

 - `6`

 - `12`

 This implies that phones like `(206) 987 4321` will not be recognized, because

 there's no sample data that matches that pattern because there are no hyphens.

 - Example 5: Specifying data types to the generated properties -

 $template = @'

 {[string]Name*:Phoebe Cat}, {[string]phone:425-123-6789}, {[int]age:6}

 {[string]Name*:Lucky Shot}, {[string]phone:(206) 987-4321}, {[int]age:12}

 '@ Page 7/9

 $testText = @'

 Phoebe Cat, 425-123-6789, 6

 Lucky Shot, (206) 987-4321, 12

 Elephant Wise, 425-888-7766, 87

 Wild Shrimp, (111) 222-3333, 1

 '@

 $PersonalData = $testText | ConvertFrom-String -TemplateContent $template

 Write-output ("Pet items found: " + ($PersonalData.Count))

 $PersonalData

 Pet items found: 4

 Name phone age

 ---- ----- ---

 Phoebe Cat 425-123-6789 6

 Lucky Shot (206) 987-4321 12

 Elephant Wise 425-888-7766 87

 Wild Shrimp (111) 222-3333 1

 $PersonalData | Get-Member

 TypeName: System.Management.Automation.PSCustomObject

 Name MemberType Definition

 ---- ---------- ----------

 Equals Method bool Equals(System.Object obj)

 GetHashCode Method int GetHashCode()

 GetType Method type GetType()

 ToString Method string ToString()

 age NoteProperty int age=6

 Name NoteProperty string Name=Phoebe Cat Page 8/9

 phone NoteProperty string phone=425-123-6789

 The `Get-Member` cmdlet is used to show that the age property is an integer.

REMARKS

 To see the examples, type: "get-help ConvertFrom-String -examples".

 For more information, type: "get-help ConvertFrom-String -detailed".

 For technical information, type: "get-help ConvertFrom-String -full".

 For online help, type: "get-help ConvertFrom-String -online"

Page 9/9

