
PowerShell Get-Help on command 'Convert-String'

PS C:\Users\wahid> Get-Help Convert-String

NAME

 Convert-String

SYNOPSIS

 Formats a string to match examples.

SYNTAX

 Convert-String [-Example

 <System.Collections.Generic.List`1[System.Management.Automation.PSObject]>]

 -InputObject <System.String> [<CommonParameters>]

DESCRIPTION

 The cmdlet formats a string to match the format of examples.

PARAMETERS

 -Example

 <System.Collections.Generic.List`1[System.Management.Automation.PSObject]>

 Specifies a list of examples of the target format. Specify pairs separated
Page 1/7

 by the equal sign (`=`), with the source pattern on the left and the

 target pattern on the right, as in the following examples:

 - `-Example "Hello World=World, Hello"`

 - `-Example "Hello World=World: Hello",'"Hello","1"=1: Hello'`

 > [!NOTE] > The second example uses a list of patterns

 Alternatively, specify a list of hash tables that contain Before and After

 properties.

 - `-Example @{before='"Hello","World"'; after='World: Hello'},

 @{before='"Hello","1"'; after='1: Hello'}`

 > [!CAUTION] > Avoid using spaces around the equal sign(`=`), as they are

 treated as part of the pattern.

 -InputObject <System.String>

 Specifies a string to format.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ------------ Example 1: Convert format of a string ------------

 "Mu Han", "Jim Hance", "David Ahs", "Kim Akers" | Convert-String -Example "Ed

 Wilson=Wilson, E."

 Page 2/7

 Han, M.

 Hance, J.

 Ahs, D.

 Akers, K.

 The first command creates an array that contains first and last names.

 The second command formats the names according to the example. It puts the

 surname first in the output, followed by an initial.

 ------------ Example 2: Simplify format of a string ------------

 $composers = @("Johann Sebastian Bach", "Wolfgang Amadeus Mozart", "Frederic

 Francois Chopin", "Johannes Brahms")

 $composers | Convert-String -Example "first middle last=last, first"

 Bach, Johann

 Mozart, Wolfgang

 Chopin, Frederic

 Brahms, Johannes

 The first command creates an array that contains first, middle and last names.

 Note that the last entry has no middle name.

 The second command formats the names according to the example. It puts the

 last name first in the output, followed by the first name. All middle names

 removed; entry without middle name is handled correctly.

 Example 3: Output management when strings don't match example

 $composers = @("Johann Sebastian Bach", "Wolfgang Amadeus Mozart", "Frederic

 Francois Chopin", "Johannes Brahms")

 $composers | Convert-String -Example "first middle last=middle, first"

 Sebastian, Johann Page 3/7

 Amadeus, Wolfgang

 Francois, Frederic

 The first command creates an array that contains first, middle and last names.

 Note that the last entry has no middle name.

 The second command formats the names according to the example. It puts the

 middle name first in the output, followed by the first name. The last entry in

 `$Composers` is skipped, because it doesn't match the sample pattern: it has

 no middle name.

 ------------ Example 4: Caution with beauty spaces ------------

 $composers = @("Antonio Vivaldi", "Richard Wagner ", "Franz Schubert",

 "Johannes Brahms ")

 $composers | Convert-String -Example "Patti Fuller = Fuller, P."

 Wagner, R.

 Brahms, J.

 The first command creates an array of first and last names. Note that second

 and fourth items have an extra trailing space, after the last name.

 The second command converts all strings that match the sample pattern: word,

 space, word, and final trailing space , all of this before the equal

 sign(`=`). Also, note the leading space in the output.

 - Example 5: Format process information with multiple patterns -

 $ExamplePatterns = @(

 @{before='"Hello","World"'; after='World: Hello'},

 @{before='"Hello","1"'; after='1: Hello'},

 @{before='"Hello-World","22"'; after='22: Hello-World'},

 @{before='"hello world","333"'; after='333: hello world'}

) Page 4/7

 $Processes = Get-Process | Select-Object -Property ProcessName, Id |

 ConvertTo-Csv -NoTypeInformation

 $Processes | Convert-String -Example $ExamplePatterns

 Id: ProcessName

 4368: AGSService

 8896: Amazon Music Helper

 4420: AppleMobileDeviceService

 ...

 11140: git-bash

 0: Idle

 ...

 56: Secure System

 ...

 13028: WmiPrvSE

 2724: WUDFHost

 2980: WUDFHost

 3348: WUDFHost

 $ExamplePatterns defines different expected patterns in the data, through

 examples.

 The first pattern, `@{before='"Hello","World"'; after='World: Hello'}`, reads

 as follows:

 - expect strings where a word comes enclosed in double quotes, then a comma, -

 and then the second, and last, word enclosed in quotes; - with no spaces in

 the string. On the output: place second word first, - without quotes, then a

 single space, and then the first word, without quotes. The second pattern,

 `@{before='"Hello","1"'; after='1: Hello'}`, reads as follows:

 - expect strings where a word comes enclosed in double quotes, then a comma, -

 and then a number enclosed in quotes; - with no spaces in the string. On the Page 5/7

 output: place the number first, - without quotes, then a single space, and

 then the word, without quotes. The third pattern,

 `@{before='"Hello-World","22"'; after='22: Hello-World'}`, reads as follows:

 - expect strings where two words with a hyphen in between come enclosed in -

 double quotes, then a comma, and then a number enclosed in quotes; - with no

 spaces between the comma and the third double quote. - On the output: place

 the number first, without quotes, then a single space, - and then the

 hyphenated words, without quotes. The fourth, and final, pattern,

 `@{before='"hello world","333"'; after='333: hello world'}`, reads as follows:

 - expect strings where two words with a space in between come enclosed in -

 double quotes, then a comma, and then a number enclosed in quotes; - with no

 spaces between the comma and the third double quote. - On the output: place

 the number first, without quotes, then a single space, - and then the words

 with the space in between, without quotes. The first command gets all

 processes by using the Get-Process cmdlet. The command passes them to the

 Select-Object cmdlet, which selects the process name and process ID. At the

 end of the pipeline, the command converts the output to comma separated

 values, without type information, by using the ConvertTo-Csv cmdlet. The

 command stores the results in the $Processes variable. $Processes now contains

 process names and PID.

 The second command specifies an example variable that changes the order of the

 input items. The command coverts each string in `$Processes`.

 > [!NOTE] > The fourth pattern implicitly says that two or more words

 separated by spaces are matched. Without > the fourth pattern, only the first

 word of the string enclosed in double quotes is matched.

REMARKS

 To see the examples, type: "get-help Convert-String -examples".

 For more information, type: "get-help Convert-String -detailed".

 For technical information, type: "get-help Convert-String -full". Page 6/7

 For online help, type: "get-help Convert-String -online"

Page 7/7

