
PowerShell Get-Help on command 'Connect-PSSession'

PS C:\Users\wahid> Get-Help Connect-PSSession

NAME

 Connect-PSSession

SYNOPSIS

 Reconnects to disconnected sessions.

SYNTAX

 Connect-PSSession [-ConnectionUri] <System.Uri[]> [-AllowRedirection]

 [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-Name

 <System.String[]>] [-SessionOption

 <System.Management.Automation.Remoting.PSSessionOption>] [-ThrottleLimit

 <System.Int32>] [-Confirm] [-WhatIf] [<CommonParameters>]

 Connect-PSSession [-ConnectionUri] <System.Uri[]> [-AllowRedirection]

 [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]
Page 1/15

 [-Credential <System.Management.Automation.PSCredential>] -InstanceId

 <System.Guid[]> [-SessionOption

 <System.Management.Automation.Remoting.PSSessionOption>] [-ThrottleLimit

 <System.Int32>] [-Confirm] [-WhatIf] [<CommonParameters>]

 Connect-PSSession [-ComputerName] <System.String[]> [-ApplicationName

 <System.String>] [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] [-Name

 <System.String[]>] [-Port <System.Int32>] [-SessionOption

 <System.Management.Automation.Remoting.PSSessionOption>] [-ThrottleLimit

 <System.Int32>] [-UseSSL] [-Confirm] [-WhatIf] [<CommonParameters>]

 Connect-PSSession [-ComputerName] <System.String[]> [-ApplicationName

 <System.String>] [-Authentication {Default | Basic | Negotiate |

 NegotiateWithImplicitCredential | Credssp | Digest | Kerberos}]

 [-CertificateThumbprint <System.String>] [-ConfigurationName <System.String>]

 [-Credential <System.Management.Automation.PSCredential>] -InstanceId

 <System.Guid[]> [-Port <System.Int32>] [-SessionOption

 <System.Management.Automation.Remoting.PSSessionOption>] [-ThrottleLimit

 <System.Int32>] [-UseSSL] [-Confirm] [-WhatIf] [<CommonParameters>]

 Connect-PSSession [-Id] <System.Int32[]> [-ThrottleLimit <System.Int32>]

 [-Confirm] [-WhatIf] [<CommonParameters>]

 Connect-PSSession -InstanceId <System.Guid[]> [-ThrottleLimit <System.Int32>]

 [-Confirm] [-WhatIf] [<CommonParameters>]

 Connect-PSSession [-Name <System.String[]>] [-ThrottleLimit <System.Int32>]

 [-Confirm] [-WhatIf] [<CommonParameters>]

 Connect-PSSession [-Session] Page 2/15

 <System.Management.Automation.Runspaces.PSSession[]> [-ThrottleLimit

 <System.Int32>] [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Connect-PSSession` cmdlet reconnects to user-managed PowerShell sessions

 (PSSessions) that were disconnected. It works on sessions that are

 disconnected intentionally, such as by using the `Disconnect-PSSession` cmdlet

 or the InDisconnectedSession parameter of the `Invoke-Command` cmdlet, and

 those that were disconnected unintentionally, such as by a temporary network

 outage.

 `Connect-PSSession` can connect to any disconnected session that was started

 by the same user. These include those that were started by or disconnected

 from other sessions on other computers.

 However, `Connect-PSSession` cannot connect to broken or closed sessions, or

 interactive sessions started by using the `Enter-PSSession` cmdlet. Also you

 cannot connect sessions to sessions started by other users, unless you can

 provide the credentials of the user who created the session.

 For more information about the Disconnected Sessions feature, see

 about_Remote_Disconnected_Sessions

 (about/about_Remote_Disconnected_Sessions.md).

 This cmdlet was introduced in Windows PowerShell 3.0.

PARAMETERS

 -AllowRedirection <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet allows redirection of this connection to an

 alternate URI.

 Page 3/15

 When you use the ConnectionURI parameter, the remote destination can

 return an instruction to redirect to a different URI. By default,

 PowerShell does not redirect connections, but you can use this parameter

 to allow it to redirect the connection.

 You can also limit the number of times the connection is redirected by

 changing the MaximumConnectionRedirectionCount session option value. Use

 the MaximumRedirection parameter of the `New-PSSessionOption` cmdlet or

 set the MaximumConnectionRedirectionCount property of the $PSSessionOption

 preference variable. The default value is `5`.

 -ApplicationName <System.String>

 Specifies the name of an application. This cmdlet connects only to

 sessions that use the specified application.

 Enter the application name segment of the connection URI. For example, in

 the following connection URI, the application name is WSMan:

 `http://localhost:5985/WSMAN`. The application name of a session is stored

 in the Runspace.ConnectionInfo.AppName property of the session.

 The value of this parameter is used to select and filter sessions. It does

 not change the application that the session uses.

 -Authentication

 <System.Management.Automation.Runspaces.AuthenticationMechanism>

 Specifies the mechanism that is used to authenticate user credentials in

 the command to reconnect to the disconnected session. The acceptable

 values for this parameter are:

 - `Default`

 - `Basic`

 Page 4/15

 - `Credssp`

 - `Digest`

 - `Kerberos`

 - `Negotiate`

 - `NegotiateWithImplicitCredential`

 The default value is `Default`.

 For more information about the values of this parameter, see

 AuthenticationMechanism Enumeration (/dotnet/api/system.management.automati

 on.runspaces.authenticationmechanism).

 > [!CAUTION] > Credential Security Support Provider (CredSSP)

 authentication, in which the user's credentials are > passed to a remote

 computer to be authenticated, is designed for commands that require >

 authentication on more than one resource, such as accessing a remote

 network share. This mechanism > increases the security risk of the remote

 operation. If the remote computer is compromised, the > credentials that

 are passed to it can be used to control the network session.

 -CertificateThumbprint <System.String>

 Specifies the digital public key certificate (X509) of a user account that

 has permission to connect to the disconnected session. Enter the

 certificate thumbprint of the certificate.

 Certificates are used in client certificate-based authentication. They can

 be mapped only to local user accounts. They do not work with domain

 accounts. Page 5/15

 To get a certificate thumbprint, use a `Get-Item` or `Get-ChildItem`

 command in the PowerShell `Cert:` drive.

 -ComputerName <System.String[]>

 Specifies the computers on which the disconnected sessions are stored.

 Sessions are stored on the computer that is at the server-side or

 receiving end of a connection. The default is the local computer.

 Type the NetBIOS name, an IP address, or a fully qualified domain name of

 one computer. Wildcard characters are not permitted. To specify the local

 computer, type the computer name, `localhost`, or a dot (`.`)

 -ConfigurationName <System.String>

 Connects only to sessions that use the specified session configuration.

 Enter a configuration name or the fully qualified resource URI for a

 session configuration. If you specify only the configuration name, the

 following schema URI is prepended:

 `http://schemas.microsoft.com/powershell`. The configuration name of a

 session is stored in the ConfigurationName property of the session.

 The value of this parameter is used to select and filter sessions. It does

 not change the session configuration that the session uses.

 For more information about session configurations, see

 about_Session_Configurations (About/about_Session_Configurations.md).

 -ConnectionUri <System.Uri[]>

 Specifies the URIs of the connection endpoints for the disconnected

 sessions.

 The URI must be fully qualified. The format of this string is as follows: Page 6/15

 `<Transport>://<ComputerName>:<Port>/<ApplicationName>`

 The default value is as follows:

 `http://localhost:5985/WSMAN`

 If you do not specify a connection URI, you can use the UseSSL and Port

 parameters to specify the connection URI values.

 Valid values for the Transport segment of the URI are HTTP and HTTPS. If

 you specify a connection URI with a Transport segment, but do not specify

 a port, the session is created with standards ports: `80` for HTTP and

 `443` for HTTPS. To use the default ports for PowerShell remoting, specify

 port `5985` for HTTP or `5986` for HTTPS.

 If the destination computer redirects the connection to a different URI,

 PowerShell prevents the redirection unless you use the AllowRedirection

 parameter in the command.

 -Credential <System.Management.Automation.PSCredential>

 Specifies a user account that has permission to connect to the

 disconnected session. The default is the current user.

 Type a username, such as `User01` or `Domain01\User01`, or enter a

 PSCredential object generated by the `Get-Credential` cmdlet. If you type

 a user name, you're prompted to enter the password.

 Credentials are stored in a PSCredential

 (/dotnet/api/system.management.automation.pscredential)object and the

 password is stored as a SecureString

 (/dotnet/api/system.security.securestring).

 Page 7/15

 > [!NOTE] > For more information about SecureString data protection, see >

 How secure is SecureString?

 (/dotnet/api/system.security.securestring#how-secure-is-securestring).

 -Id <System.Int32[]>

 Specifies the IDs of the disconnected sessions. The Id parameter works

 only when the disconnected session was previously connected to the current

 session.

 This parameter is valid, but not effective, when the session is stored on

 the local computer, but was not connected to the current session.

 -InstanceId <System.Guid[]>

 Specifies the instance IDs of the disconnected sessions.

 The instance ID is a GUID that uniquely identifies a PSSession on a local

 or remote computer.

 The instance ID is stored in the InstanceID property of the PSSession .

 -Name <System.String[]>

 Specifies the friendly names of the disconnected sessions.

 -Port <System.Int32>

 Specifies the network port on the remote computer that is used to

 reconnect to the session. To connect to a remote computer, the remote

 computer must be listening on the port that the connection uses. The

 default ports are `5985`, which is the WinRM port for HTTP, and `5986`,

 which is the WinRM port for HTTPS.

 Before using an alternate port, you must configure the WinRM listener on

 the remote computer to listen at that port. To configure the listener,

 type the following two commands at the PowerShell prompt: Page 8/15

 `Remove-Item -Path WSMan:\Localhost\listener\listener* -Recurse`

 `New-Item -Path WSMan:\Localhost\listener -Transport http -Address * -Port

 <port-number>`

 Do not use the Port parameter unless you must. The port that is set in the

 command applies to all computers or sessions on which the command runs. An

 alternate port setting might prevent the command from running on all

 computers.

 -Session <System.Management.Automation.Runspaces.PSSession[]>

 Specifies the disconnected sessions. Enter a variable that contains the

 PSSession objects or a command that creates or gets the PSSession objects,

 such as a `Get-PSSession` command.

 -SessionOption <System.Management.Automation.Remoting.PSSessionOption>

 Specifies advanced options for the session. Enter a SessionOption object,

 such as one that you create by using the `New-PSSessionOption` cmdlet, or

 a hash table in which the keys are session option names and the values are

 session option values.

 The default values for the options are determined by the value of the

 `$PSSessionOption` preference variable, if it is set. Otherwise, the

 default values are established by options set in the session configuration.

 The session option values take precedence over default values for sessions

 set in the `$PSSessionOption` preference variable and in the session

 configuration. However, they do not take precedence over maximum values,

 quotas or limits set in the session configuration.

 For a description of the session options that includes the default values,

 see `New-PSSessionOption`. For information about the $PSSessionOption Page 9/15

 preference variable, see about_Preference_Variables

 (About/about_Preference_Variables.md). For more information about session

 configurations, see about_Session_Configurations

 (About/about_Session_Configurations.md).

 -ThrottleLimit <System.Int32>

 Specifies the maximum number of concurrent connections that can be

 established to run this command. If you omit this parameter or enter a

 value of `0`, the default value, `32`, is used.

 The throttle limit applies only to the current command, not to the session

 or to the computer.

 -UseSSL <System.Management.Automation.SwitchParameter>

 Indicates that this cmdlet uses the Secure Sockets Layer (SSL) protocol to

 connect to the disconnected session. By default, SSL is not used.

 WS-Management encrypts all PowerShell content transmitted over the

 network. The UseSSL parameter is an additional protection that sends the

 data across an HTTPS connection instead of an HTTP connection.

 If you use this parameter, but SSL is not available on the port that is

 used for the command, the command fails.

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable, Page 10/15

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 -------------- Example 1: Reconnect to a session --------------

 Connect-PSSession -ComputerName Server01 -Name ITTask

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 4 ITTask Server01 Opened ITTasks

 Available

 This command reconnects to the `ITTask` session on the Server01 computer.

 The output shows that the command was successful. The State of the session is

 `Opened` and the Availability is `Available`, which indicates that you can run

 commands in the session.

 ----- Example 2: Effect of disconnecting and reconnecting -----

 Get-PSSession

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 Backups Localhost Opened Microsoft.PowerShell

 Available

 Get-PSSession | Disconnect-PSSession

 Id Name ComputerName State ConfigurationName Page 11/15

 Availability

 -- ---- ------------ ----- -----------------

 1 Backups Localhost Disconnected Microsoft.PowerShell

 None

 Get-PSSession | Connect-PSSession

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 Backups Localhost Opened Microsoft.PowerShell

 Available

 This example shows the effect of disconnecting and then reconnecting to a

 session.

 The first command uses the `Get-PSSession` cmdlet. Without the ComputerName

 parameter, the command gets only sessions that were created in the current

 session.

 The output shows that the command gets the `Backups` session on the local

 computer. The State of the session is `Opened` and the Availability is

 `Available`.

 The second command uses the `Get-PSSession` cmdlet to get the PSSession

 objects that were created in the current session and the

 `Disconnect-PSSession` cmdlet to disconnect the sessions. The output shows

 that the `Backups` session was disconnected. The State of the session is

 `Disconnected` and the Availability is `None`.

 The third command uses the `Get-PSSession` cmdlet to get the PSSession objects Page 12/15

 that were created in the current session and the `Connect-PSSession` cmdlet to

 reconnect the sessions. The output shows that the `Backups` session was

 reconnected. The State of the session is `Opened` and the Availability is

 `Available`.

 If you use the `Connect-PSSession` cmdlet on a session that is not

 disconnected, the command does not affect the session and it does not generate

 any errors.

 --- Example 3: Series of commands in an enterprise scenario ---

 $s = New-PSSession -ComputerName Server01 -Name ITTask -ConfigurationName

 ITTasks

 Invoke-Command -Session $s -ScriptBlock {Start-Job -FilePath

 \\Server30\Scripts\Backup-SQLDatabase.ps1}

 Id Name State HasMoreData Location

 Command

 -- ---- ----- ----------- --------

 2 Job2 Running True Server01

 \\Server30\Scripts\Backup...

 Disconnect-PSSession -Session $s -OutputBufferingMode Drop -IdleTimeoutSec

 60*60*15

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 ITTask Server01 Disconnected ITTasks None

 Get-PSSession -ComputerName Server01 -Name ITTask

 Page 13/15

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 ITTask Server01 Disconnected ITTasks None

 $s = Connect-PSSession -ComputerName Server01 -Name ITTask

 Id Name ComputerName State ConfigurationName

 Availability

 -- ---- ------------ ----- -----------------

 1 ITTask Server01 Opened ITTasks

 Available

 Invoke-Command -Session $s -ScriptBlock {Get-Job}

 Id Name State HasMoreData Location

 Command

 -- ---- ----- ----------- --------

 2 Job2 Completed True Server01

 \\Server30\Scripts\Backup...

 Invoke-Command -Session $s -ScriptBlock {$BackupSpecs = Receive-Job -JobName

 Job2}

 Invoke-Command -Session $s -ScriptBlock

 {\\Server30\Scripts\New-SQLDatabase.ps1 -InitData $BackupSpecs.Initialization}

 Disconnect-PSSession -Session $s -OutputBufferingMode Drop -IdleTimeoutSec

 60*60*15

 Id Name ComputerName State ConfigurationName

 Availability Page 14/15

 -- ---- ------------ ----- -----------------

 1 ITTask Server01 Disconnected ITTasks None

 The ninth command disconnects from the session in the `$s` variable.The

 administrator closes PowerShell and closes the computer. She can reconnect to

 the session on the next day and check the script status from her work computer.

REMARKS

 To see the examples, type: "get-help Connect-PSSession -examples".

 For more information, type: "get-help Connect-PSSession -detailed".

 For technical information, type: "get-help Connect-PSSession -full".

 For online help, type: "get-help Connect-PSSession -online"

Page 15/15

