
PowerShell Get-Help on command 'Compress-Archive'

PS C:\Users\wahid> Get-Help Compress-Archive

NAME

 Compress-Archive

SYNOPSIS

 Creates a compressed archive, or zipped file, from specified files and

 directories.

SYNTAX

 Compress-Archive [-Path] <System.String[]> [-DestinationPath] <System.String>

 [-CompressionLevel {Optimal | NoCompression | Fastest}] -Force [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Compress-Archive [-DestinationPath] <System.String> [-CompressionLevel

 {Optimal | NoCompression | Fastest}] -Force -LiteralPath <System.String[]>

 [-Confirm] [-WhatIf] [<CommonParameters>]

 Compress-Archive [-DestinationPath] <System.String> [-CompressionLevel

 {Optimal | NoCompression | Fastest}] -LiteralPath <System.String[]> -Update

 [-Confirm] [-WhatIf] [<CommonParameters>]

Page 1/8

 Compress-Archive [-DestinationPath] <System.String> [-CompressionLevel

 {Optimal | NoCompression | Fastest}] -LiteralPath <System.String[]> [-Confirm]

 [-WhatIf] [<CommonParameters>]

 Compress-Archive [-Path] <System.String[]> [-DestinationPath] <System.String>

 [-CompressionLevel {Optimal | NoCompression | Fastest}] [-Confirm] [-WhatIf]

 [<CommonParameters>]

 Compress-Archive [-Path] <System.String[]> [-DestinationPath] <System.String>

 [-CompressionLevel {Optimal | NoCompression | Fastest}] -Update [-Confirm]

 [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Compress-Archive` cmdlet creates a compressed, or zipped, archive file

 from one or more specified files or directories. An archive packages multiple

 files, with optional compression, into a single zipped file for easier

 distribution and storage. An archive file can be compressed using the

 compression algorithm specified by the CompressionLevel parameter.

 The `Compress-Archive` cmdlet uses the System.IO.Compression.ZipArchive API to

 compress files. The API limits the maximum file size to 2GB. For more

 information, see System.IO.Compression.ZipArchive

 (xref:System.IO.Compression.ZipArchive).

 > [!NOTE] > The `Compress-Archive` cmdlet ignores hidden files and folders

 when creating or updating the > archive file. > > To ensure hidden files and

 folders are compressed into the archive, use the .NET API instead.

 Some examples use splatting to reduce the line length of the code samples. For

 more information, see about_Splatting

 (../Microsoft.PowerShell.Core/About/about_Splatting.md).

 Page 2/8

PARAMETERS

 -CompressionLevel <System.String>

 Specifies how much compression to apply when you're creating the archive

 file. Faster compression requires less time to create the file, but can

 result in larger file sizes.

 If this parameter isn't specified, the command uses the default value,

 Optimal .

 The following are the acceptable values for this parameter:

 - Fastest . Use the fastest compression method available to reduce

 processing time. Faster compression can result in larger file sizes. -

 NoCompression . Doesn't compress the source files. - Optimal . Processing

 time is dependent on file size.

 -DestinationPath <System.String>

 This parameter is required and specifies the path to the archive output

 file. The DestinationPath should include the name of the zipped file, and

 either the absolute or relative path to the zipped file.

 If the file name in DestinationPath doesn't have a `.zip` file name

 extension, the cmdlet adds the `.zip` file name extension.

 -Force <System.Management.Automation.SwitchParameter>

 Use this parameter to overwrite an existing archive file.

 -LiteralPath <System.String[]>

 Specifies the path or paths to the files that you want to add to the

 archive zipped file. Unlike the Path parameter, the value of LiteralPath

 is used exactly as it's typed. No characters are interpreted as wildcards.

 If the path includes escape characters, enclose each escape character in Page 3/8

 single quotation marks, to instruct PowerShell not to interpret any

 characters as escape sequences. To specify multiple paths, and include

 files in multiple locations in your output zipped file, use commas to

 separate the paths.

 -Path <System.String[]>

 Specifies the path or paths to the files that you want to add to the

 archive zipped file. To specify multiple paths, and include files in

 multiple locations, use commas to separate the paths.

 This parameter accepts wildcard characters. Wildcard characters allow you

 to add all files in a directory to your archive file.

 Using wildcards with a root directory affects the archive's contents:

 - To create an archive that includes the root directory, and all its files

 and subdirectories, specify the root directory in the Path without

 wildcards. For example: `-Path C:\Reference` - To create an archive that

 excludes the root directory, but zips all its files and subdirectories,

 use the asterisk (` `) wildcard. For example: `-Path C:\Reference\ ` - To

 create an archive that only zips the files in the root directory, use the

 star-dot-star (` . `) wildcard. Subdirectories of the root aren't included

 in the archive. For example: `-Path C:\Reference\ . `

 -Update <System.Management.Automation.SwitchParameter>

 Updates the specified archive by replacing older file versions in the

 archive with newer file versions that have the same names. You can also

 add this parameter to add files to an existing archive.

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 -WhatIf <System.Management.Automation.SwitchParameter> Page 4/8

 Shows what would happen if the cmdlet runs. The cmdlet isn't run.

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

 ----- Example 1: Compress files to create an archive file -----

 $compress = @{

 Path = "C:\Reference\Draftdoc.docx", "C:\Reference\Images*.vsd"

 CompressionLevel = "Fastest"

 DestinationPath = "C:\Archives\Draft.zip"

 }

 Compress-Archive @compress

 The Path parameter accepts specific file names and file names with wildcards,

 `*.vsd`. The Path uses a comma-separated list to get files from different

 directories. The compression level is Fastest to reduce processing time. The

 DestinationPath parameter specifies the location for the `Draft.zip` file. The

 `Draft.zip` file contains `Draftdoc.docx` and all the files with a `.vsd`

 extension.

 -------- Example 2: Compress files using a LiteralPath --------

 $compress = @{

 LiteralPath= "C:\Reference\Draft Doc.docx", "C:\Reference\Images\diagram2.vsd"

 CompressionLevel = "Fastest"

 DestinationPath = "C:\Archives\Draft.zip"

 }

 Compress-Archive @compress

 Absolute path and file names are used because the LiteralPath parameter Page 5/8

 doesn't accept wildcards. The Path uses a comma-separated list to get files

 from different directories. The compression level is Fastest to reduce

 processing time. The DestinationPath parameter specifies the location for the

 `Draft.zip` file. The `Draft.zip` file only contains `Draftdoc.docx` and

 `diagram2.vsd`.

 Example 3: Compress a directory that includes the root directory

 Compress-Archive -Path C:\Reference -DestinationPath C:\Archives\Draft.zip

 `Compress-Archive` uses the Path parameter to specify the root directory,

 `C:\Reference`. The DestinationPath parameter specifies the location for the

 archive file. The `Draft.zip` archive includes the `Reference` root directory,

 and all its files and subdirectories.

 Example 4: Compress a directory that excludes the root directory

 Compress-Archive -Path C:\Reference* -DestinationPath C:\Archives\Draft.zip

 `Compress-Archive` uses the Path parameter to specify the root directory,

 `C:\Reference` with an asterisk (` `) wildcard. The DestinationPath *

 parameter specifies the location for the archive file. The `Draft.zip` archive

 contains the root directory's files and subdirectories. The `Reference` root

 directory is excluded from the archive.

 ---- Example 5: Compress only the files in a root directory ----

 Compress-Archive -Path C:\Reference*.* -DestinationPath C:\Archives\Draft.zip

 `Compress-Archive` uses the Path parameter to specify the root directory,

 `C:\Reference` with a star-dot-star (` . `) wildcard. The DestinationPath

 parameter specifies the location for the archive file. The `Draft.zip` archive

 only contains the `Reference` root directory's files and the root directory is

 excluded.

 --------- Example 6: Use the pipeline to archive files ---------

 Page 6/8

 Get-ChildItem -Path C:\Reference\Afile.txt, C:\Reference\Images\Bfile.txt |

 Compress-Archive -DestinationPath C:\Archives\PipelineFiles.zip

 `Get-ChildItem` uses the Path parameter to specify two files from different

 directories. Each file is represented by a FileInfo object and is sent down

 the pipeline to `Compress-Archive`. The two specified files are archived in

 `PipelineFiles.zip`.

 ------ Example 7: Use the pipeline to archive a directory ------

 Get-ChildItem -Path C:\LogFiles | Compress-Archive -DestinationPath

 C:\Archives\PipelineDir.zip

 `Get-ChildItem` uses the Path parameter to specify the `C:\LogFiles` root

 directory. Each FileInfo and DirectoryInfo object is sent down the pipeline.

 `Compress-Archive` adds each object to the `PipelineDir.zip` archive. The Path

 parameter isn't specified because the pipeline objects are received into

 parameter position 0.

 --------- Example 8: How recursion can affect archives ---------

 Get-ChildItem -Path C:\TestLog -Recurse |

 Compress-Archive -DestinationPath C:\Archives\PipelineRecurse.zip

 The `C:\TestLog` directory doesn't contain any files. It does contain a

 subdirectory named `testsub` that contains the `testlog.txt` file.

 `Get-ChildItem` uses the Path parameter to specify the root directory,

 `C:\TestLog`. The Recurse parameter processes the files and directories. A

 DirectoryInfo object is created for `testsub` and a FileInfo object

 `testlog.txt`.

 Each object is sent down the pipeline to `Compress-Archive`. The

 DestinationPath specifies the location for the archive file. The Path Page 7/8

 parameter isn't specified because the pipeline objects are received into

 parameter position 0.

 The following summary describes the `PipelineRecurse.zip` archive's contents

 that contains a duplicate file:

 - The DirectoryInfo object creates the `testsub` directory and contains the

 `testlog.txt` file, which reflects the original directory structure. - The

 FileInfo object creates a duplicate `testlog.txt` in the archive's root. The

 duplicate file is created because recursion sent a file object to

 `Compress-Archive`. This behavior is expected because each object sent down

 the pipeline is added to the archive.

 ---------- Example 9: Update an existing archive file ----------

 Compress-Archive -Path C:\Reference -Update -DestinationPath

 C:\Archives\Draft.zip

 The command updates `Draft.zip` with newer versions of existing files in the

 `C:\Reference` directory and its subdirectories. And, new files that were

 added to `C:\Reference` or its subdirectories are included in the updated

 `Draft.zip` archive.

REMARKS

 To see the examples, type: "get-help Compress-Archive -examples".

 For more information, type: "get-help Compress-Archive -detailed".

 For technical information, type: "get-help Compress-Archive -full".

 For online help, type: "get-help Compress-Archive -online"

Page 8/8

