mediaLib Library Functions mlib_SignalLPCCovariance_S16(3MLIB)
NAME
mlib_SignalLPCCovariance_S16,
mlib_SignalLPCCovariance_S16_Adp - perform linear predictive
coding with covariance methodSYNOPSIS
cc [ flag... ] file... -lmlib [ library... ]
#include
mlib_status mlib_SignalLPCCovariance_S16(mlib_s16 *coeff,
mlib_s32 cscale, const mlib_s16 *signal, void *state);
mlib_status mlib_SignalLPCCovariance_S16_Adp(mlib_s16 *coeff,
mlib_s32 *cscale, const mlib_s16 *signal, void *state);
DESCRIPTION
Each function performs linear predictive coding with covari-
ance method. In linear predictive coding (LPC) model, each speech sampleis represented as a linear combination of the past M sam-
ples. Ms(n) = SUM a(i) * s(n-i) + G * u(n)
i=1where s(*) is the speech signal, u(*) is the excitation sig-
nal, and G is the gain constants, M is the order of the linear prediction filter. Given s(*), the goal is to find a set of coefficient a(*) that minimizes the prediction error e(*). Me(n) = s(n) - SUM a(i) * s(n-i)
i=1 In covariance method, the coefficients can be obtained by solving following set of linear equations. M SUM a(i) * c(i,k) = c(0,k), k=1,...,M i=1SunOS 5.11 Last change: 2 Mar 2007 1
mediaLib Library Functions mlib_SignalLPCCovariance_S16(3MLIB)
whereN-k-1
c(i,k) = SUM s(j) * s(j+k-i)
j=0 are the covariance coefficients of s(*), N is the length of the input speech vector. Note that the covariance matrix R is a symmetric matrix, andthe equations can be solved efficiently with Cholesky decom-
position method. See Fundamentals of Speech Recognition by Lawrence Rabinerand Biing-Hwang Juang, Prentice Hall, 1993.
Note for functions with adaptive scaling (with _Adp post-
fix), the scaling factor of the output data will be calcu-
lated based on the actual data; for functions with non-
adaptive scaling (without _Adp postfix), the user supplied
scaling factor will be used and the output will be saturated if necessary.PARAMETERS
Each function takes the following arguments: coeff The linear prediction coefficients.cscale The scaling factor of the linear prediction coef-
ficients, where actual_data = output_data * 2**(-
scaling_factor).
signal The input signal vector with samples in Q15 for-
mat. state Pointer to the internal state structure.RETURN VALUES
Each function returns MLIB_SUCCESS if successful. Otherwise
it returns MLIB_FAILURE.
ATTRIBUTES
SunOS 5.11 Last change: 2 Mar 2007 2
mediaLib Library Functions mlib_SignalLPCCovariance_S16(3MLIB)
See attributes(5) for descriptions of the following attri-
butes:____________________________________________________________
| ATTRIBUTE TYPE | ATTRIBUTE VALUE |
|_____________________________|_____________________________|
| Interface Stability | Committed ||_____________________________|_____________________________|
| MT-Level | MT-Safe |
|_____________________________|_____________________________|
SEE ALSO
mlib_SignalLPCCovarianceInit_S16(3MLIB),
mlib_SignalLPCCovarianceFree_S16(3MLIB), attributes(5)
SunOS 5.11 Last change: 2 Mar 2007 3