NAME
rand, randr, srand - pseudo-random number generator SYNOPSIS
#include
int rand(void); int randr(unsigned int *seedp); void srand(unsigned int seed); Feature Test Macro Requirements for glibc (see featuretestmacros(7)): randr(): POSIXCSOURCE >= 1 || XOPENSOURCE || POSIXSOURCE DESCRIPTION The rand() function returns a pseudo-random integer in the range 0 to RANDMAX inclusive (i.e., the mathematical range [0, RANDMAX]). The srand() function sets its argument as the seed for a new sequence
of pseudo-random integers to be returned by rand(). These sequences are repeatable by calling srand() with the same seed value. If no seed value is provided, the rand() function is automatically seeded with a value of 1. The function rand() is not reentrant, since it uses hidden state that is modified on each call. This might just be the seed value to be used by the next call, or it might be something more elaborate. In order to get reproducible behavior in a threaded application, this state must be made explicit; this can be done using the reentrant function randr().
Like rand(), randr() returns a pseudo-random integer in the range [0, RANDMAX]. The seedp argument is a pointer to an unsigned int that is used to store state between calls. If randr() is called with the same initial value for the integer pointed to by seedp, and that value
is not modified between calls, then the same pseudo-random sequence will result. The value pointed to by the seedp argument of randr() provides only a
very small amount of state, so this function will be a weak pseudo-ran‐ dom generator. Try drand48r(3) instead. RETURN VALUE The rand() and randr() functions return a value between 0 and RANDMAX (inclusive). The srand() function returns no value. ATTRIBUTES For an explanation of the terms used in this section, see attributes(7). ┌──────────────────────────┬───────────────┬─────────┐ │Interface │ Attribute │ Value │ ├──────────────────────────┼───────────────┼─────────┤
│rand(), randr(), srand() │ Thread safety │ MT-Safe │ └──────────────────────────┴───────────────┴─────────┘ CONFORMING TO The functions rand() and srand() conform to SVr4, 4.3BSD, C89, C99,
POSIX.1-2001. The function randr() is from POSIX.1-2001.
POSIX.1-2008 marks randr() as obsolete. NOTES The versions of rand() and srand() in the Linux C Library use the same
random number generator as random(3) and srandom(3), so the lower-order
bits should be as random as the higher-order bits. However, on older rand() implementations, and on current implementations on different
systems, the lower-order bits are much less random than the higher- order bits. Do not use this function in applications intended to be portable when good randomness is needed. (Use random(3) instead.) EXAMPLE
POSIX.1-2001 gives the following example of an implementation of rand() and srand(), possibly useful when one needs the same sequence on two different machines. static unsigned long next = 1; /* RANDMAX assumed to be 32767 */ int myrand(void) { next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768); } void mysrand(unsigned seed) { next = seed; }
The following program can be used to display the pseudo-random sequence produced by rand() when given a particular seed.
#include
#include
int main(int argc, char *argv[]) { int j, r, nloops; unsigned int seed; if (argc != 3) { fprintf(stderr, "Usage: %s
\n", argv[0]); exit(EXITFAILURE); } seed = atoi(argv[1]); nloops = atoi(argv[2]); srand(seed); for (j = 0; j < nloops; j++) { r = rand(); printf("%d\n", r); } exit(EXITSUCCESS); } SEE ALSO drand48(3), random(3) COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can
be found at http://www.kernel.org/doc/man-pages/.
2010-10-01 RAND(3)