Manual Pages for UNIX Darwin command on man optimize
MyWebUniversity

Manual Pages for UNIX Darwin command on man optimize

math::optimize(n) Math math::optimize(n)

NAME

math::optimize - Optimisation routines

SYNOPSIS

package require TTccll 88..22 package require mmaatthh::::ooppttiimmiizzee ??00..11?? ::::mmaatthh::::ooppttiimmiizzee::::mmiinniimmiizzee begin end func maxerr ::::mmaatthh::::ooppttiimmiizzee::::mmaaxxiimmiizzee begin end func maxerr ::::mmaatthh::::ooppttiimmiizzee::::ssoollvveeLLiinneeaarrPPrrooggrraamm constraints objective

DESCRIPTION

This package implements several optimisation algorithms: +o Minimize or maximize a function over a given interval +o Solve a linear program (maximize a linear function subject to linear constraints) The package is fully implemented in Tcl. No particular attention has been paid to the accuracy of the calculations. Instead, the algorithms have been used in a straightforward manner. This document describes the procedures and explains their usage.

Note: The linear programming algorithm is described but not yet opera-

tional. PPRROOCCEEDDUURREESS This package defines the following public procedures: ::::mmaatthh::::ooppttiimmiizzee::::mmiinniimmiizzee begin end func maxerr Minimize the given (continuous) function by examining the values in the given interval. The procedure determines the values at both ends and in the centre of the interval and then constructs

a new interval of 2/3 length that includes the minimum. No guar-

antee is made that the global minimum is found. The procedure returns the "x" value for which the function is minimal.

begin - Start of the interval

end - End of the interval

func - Name of the function to be minimized (a procedure taking

one argument).

maxerr - Maximum relative error (defaults to 1.0e-4)

::::mmaatthh::::ooppttiimmiizzee::::mmaaxxiimmiizzee begin end func maxerr Maximize the given (continuous) function by examining the values in the given interval. The procedure determines the values at both ends and in the centre of the interval and then constructs

a new interval of 1/2 length that includes the maximum. No guar-

antee is made that the global maximum is found. The procedure returns the "x" value for which the function is maximal.

begin - Start of the interval

end - End of the interval

func - Name of the function to be maximized (a procedure taking

one argument).

maxerr - Maximum relative error (defaults to 1.0e-4)

::::mmaatthh::::ooppttiimmiizzee::::ssoollvveeLLiinneeaarrPPrrooggrraamm constraints objective Solve a linear program in standard form using a straightforward implementation of the Simplex algorithm. (In the explanation below: The linear program has N constraints and M variables). The procedure returns a list of M values, the values for which the objective function is maximal or a single keyword if the linear program is not feasible or unbounded (either "unfeasible" or "unbounded")

constraints - Matrix of coefficients plus maximum values that

implement the linear constraints. It is expected to be a list of N lists of M+1 numbers each, M coefficients and the maximum value.

objective - The M coefficients of the objective function

NNOOTTEESS

Several of the above procedures take the names of procedures as argu-

ments. To avoid problems with the visibility of these procedures, the

fully-qualified name of these procedures is determined inside the opti-

mize routines. For the user this has only one consequence: the named procedure must be visible in the calling procedure. For instance: namespace eval ::mySpace { namespace export calcfunc

proc calcfunc { x } { return $x }

}

#

# Use a fully-qualified name

#

namespace eval ::myCalc {

puts [minimum ::myCalc::calcfunc $begin $end]

}

#

# Import the name

#

namespace eval ::myCalc { namespace import ::mySpace::calcfunc

puts [minimum calcfunc $begin $end]

} EEXXAAMMPPLLEESS Let us take a few simple examples:

Determine the maximum of f(x) = x^3 exp(-3x), on the interval (0,10):

proc efunc { x } { expr {[$x*$x*$x * exp(-3.0*$x)]} }

puts "Maximum at: [::math::optimize::maximum 0.0 10.0 efunc]"

The maximum allowed error determines the number of steps taken (with each step in the iteration the interval is reduced with a factor 1/2). Hence, a maximum error of 0.0001 is achieved in approximately 14 steps. An example of a linear program is: Optimise the expression 3x+2y, where: x >= 0 and y >= 0 (implicit constraints, part of the definition of linear programs) x + y <= 1 (constraints specific to the problem) 2x + 5y <= 10 This problem can be solved as follows:

set solution [::math::optimize::solveLinearProgram \

{ { 1.0 1.0 1.0 } { 2.0 5.0 10.0 } } \ { 3.0 2.0 }] Note, that a constraint like: x + y >= 1 can be turned into standard form using:

-x -y <= -1

The theory of linear programming is the subject of many a text book and

the Simplex algorithm that is implemented here is the most well-known

method to solve this type of problems. KKEEYYWWOORRDDSS linear program, math, maximum, minimum, optimization

math 0.1 math::optimize(n)




Contact us      |      About us      |      Term of use      |       Copyright © 2000-2019 MyWebUniversity.com ™