NAME
eerrff, eerrffcc - error function operators
SYNOPSIS
##iinncclluuddee <
double eerrff(double x); long double eerrffll(long double x); float eerrffff(float x); double eerrffcc(double x); long double eerrffccll(long double x); float eerrffccff(float x);> DESCRIPTION
These functions calculate the error function of x. The eerrff() function calculates the error function of x; whereerf(x) = 2/sqrt(pi)*integral from 0 to x of exp(-t*t) dt.
The eerrffcc() function calculates the complementary error function of x; that is eerrffcc() computes the difference of the error function eerrff(x) from1.0. This is useful, since for large x use of eerrffcc() avoids loss of pre-
cision due to cancellation. SSPPEECCIIAALL VVAALLUUEESSeerrff(+-0) returns +-0.
eerrff(+-infinity) returns +-1.
eerrffcc(-infinity) returns 2.
eerrffcc(+infinity) returns +0.SEE ALSO
math(3) STANDARDS The eerrff() and eerrffcc() functions conform to ISO/IEC 9899:1999(E). 4.3 Berkeley Distribution January 30, 2003 4.3 Berkeley Distribution