NAME
ddiivveerrtt - kernel packet diversion mechanism
SYNOPSIS
##iinncclluuddee <
> ##iinncclluuddee <
> ##iinncclluuddee <
int ssoocckkeett(PFINET, SOCKRAW, IPPROTODIVERT);> DESCRIPTION
Divert sockets are similar to raw IP sockets, except that they can be bound to a specific ddiivveerrtt port via the bind(2) system call. The IP address in the bind is ignored; only the port number is significant. Adivert socket bound to a divert port will receive all packets diverted to
that port by some (here unspecified) kernel mechanism(s). Packets mayalso be written to a divert port, in which case they re-enter kernel IP
packet processing. Divert sockets are normally used in conjunction with FreeBSD's packet filtering implementation and the ipfw(8) program. By reading from andwriting to a divert socket, matching packets can be passed through an
arbitrary ``filter'' as they travel through the host machine, special routing tricks can be done, etc. RREEAADDIINNGG PPAACCKKEETTSSPackets are diverted either as they are ``incoming'' or ``outgoing.''
Incoming packets are diverted after reception on an IP interface, whereas
outgoing packets are diverted before next hop forwarding.
Diverted packets may be read unaltered via read(2), recv(2), or recvfrom(2). In the latter case, the address returned will have its portset to the some tag supplied by the packet diverter, (usually the ipfw
rule number) and the IP address set to the (first) address of the inter-
face on which the packet was received (if the packet was incoming) or INADDRANY (if the packet was outgoing). In the case of an incoming packet the interface name will also be placed in the 8 bytes following the address, (assuming it fits). WWRRIITTIINNGG PPAACCKKEETTSSWriting to a divert socket is similar to writing to a raw IP socket; the
packet is injected ``as is'' into the normal kernel IP packet processingand minimal error checking is done. Packets are written as either incom-
ing or outgoing: if write(2) or send(2) is used to deliver the packet, or if sendto(2) is used with a destination IP address of INADDRANY, thenthe packet is treated as if it were outgoing, i.e., destined for a non-
local address. Otherwise, the packet is assumed to be incoming and full packet routing is done. In the latter case, the IP address specified must match the address of some local interface, or an interface name must be found after the IP address. If an interface name is found, that interface will be used and the value of the IP address will be ignored (other than the fact that it is not INADDRANY). This is to indicate on which interface the packet ``arrived.''Normally, packets read as incoming should be written as incoming; simi-
larly for outgoing packets. When reading and then writing back packets, passing the same socket address supplied by recvfrom(2) unmodified to sendto(2) simplifies things (see below). The port part of the socket address passed to the sendto(2) contains a tag that should be meaningful to the diversion module. In the case ofipfw(8) the tag is interpreted as the rule number after which rule pro-
cessing should restart. LLOOOOPP AAVVOOIIDDAANNCCEEPackets written into a divert socket (using sendto(2)) re-enter the
packet filter at the rule number following the tag given in the port part of the socket address, which is usually already set at the rule number that caused the diversion (not the next rule if there are several at thesame number). If the 'tag' is altered to indicate an alternative re-entry
point, care should be taken to avoid loops, where the same packet isdiverted more than once at the same rule.
DDEETTAAIILLSSTo enable divert sockets, your kernel must be compiled with the option
IPDIVERT.If a packet is diverted but no socket is bound to the port, or if
IPDIVERT is not enabled in the kernel, the packet is dropped.Incoming packet fragments which get diverted are fully reassembled before
delivery; the diversion of any one fragment causes the entire packet toget diverted. If different fragments divert to different ports, then
which port ultimately gets chosen is unpredictable.Packets are received and sent unchanged, except that packets read as out-
going have invalid IP header checksums, and packets written as outgoinghave their IP header checksums overwritten with the correct value. Pack-
ets written as incoming and having incorrect checksums will be dropped. Otherwise, all header fields are unchanged (and therefore in network order).Binding to port numbers less than 1024 requires super-user access, as
does creating a socket of type SOCKRAW. EERRRROORRSSWriting to a divert socket can return these errors, along with the usual
errors possible when writing raw packets: [EINVAL] The packet had an invalid header, or the IP options inthe packet and the socket options set were incompati-
ble. [EADDRNOTAVAIL] The destination address contained an IP address not equal to INADDRANY that was not associated with any interface.SEE ALSO
bind(2), recvfrom(2), sendto(2), socket(2), ipfw(8)BUGS
This is an attempt to provide a clean way for user mode processes to implement various IP tricks like address translation, but it could be cleaner, and it's too dependent on ipfw(8). It's questionable whether incoming fragments should be reassembled beforebeing diverted. For example, if only some fragments of a packet destined
for another machine don't get routed through the local machine, the packet is lost. This should probably be a settable socket option in any case. AUTHORS Archie Cobbs, Whistle Communications Corp. BSD June 18, 1996 BSD