NAME
ccssqqrrtt - complex square root function
SYNOPSIS
##iinncclluuddee <
double complex ccssqqrrtt(double complex z); long double complex ccssqqrrttll(long double complex z); float complex ccssqqrrttff(float complex z);> DESCRIPTION
ccssqqrrtt(z) computes the square root of the complex floating-point number z,
with a branch cut on the negative real axis. The result is in the righthalf-plane, including the imaginary axis. For all complex z,
csqrt(conj(z)) = conj(csqrt(z)).
SSPPEECCIIAALL VVAALLUUEESSThe conjugate symmetry of csqrt() is used to abbreviate the specification
of special values.ccssqqrrtt(+-0 + 0i) returns +0 + 0i.
ccssqqrrtt(x + inf i) returns inf + inf i for all x (including NaN). ccssqqrrtt(x + NaN i) returns NaN + NaN i.ccssqqrrtt(-inf + yi) returns 0 + inf i for any positively-signed finite y.
ccssqqrrtt(inf + yi) returns inf + 0i for any positively-signed finite y.
ccssqqrrtt(-inf + NaN i) returns NaN + inf i.
ccssqqrrtt(inf + NaN i) returns inf + NaN i. ccssqqrrtt(NaN + yi) returns NaN + NaN i. ccssqqrrtt(NaN + NaN i) returns NaN + NaN i. NNOOTTEESSIf z is in the upper half-plane, then ccssqqrrtt(z) is in the upper-right
quadrant of the complex plane. If z is in the lower half-plane, then
ccssqqrrtt(z) is in the lower-right quadrant of the complex plane.
SEE ALSO
complex(3) STANDARDS The ccssqqrrtt() function conforms to ISO/IEC 9899:1999(E). 4th Berkeley Distribution October 10, 2006 4th Berkeley Distribution