NAME
ccaattaannhh - complex inverse hyperbolic tangent function
SYNOPSIS
double complex ccaattaannhh(double complex z); long double complex ccaattaannhhll(long double complex z); float complex ccaattaannhhff(float complex z);DESCRIPTION
ccaattaannhh(z) computes the inverse hyperbolic tangent of the complex float-
ing-point number z, with branch cuts outside the interval [-1, 1] along
the real axis. ccaattaannhh() returns values in a strip of the complex plane with imaginarypart in the interval [-Pi/2, Pi/2].
For all complex floating point numbers z, catanh(conj(z)) = conj(catanh(z)).catanh(-z) = -catanh(z)
SSPPEECCIIAALL VVAALLUUEESS The symmetries of catanh() are used to abbreviate the specification of special values. ccaattaannhh(0 + 0i) returns 0 + 0 i. ccaattaannhh(0 + NaN i) returns 0 + NaN i.ccaattaannhh(1 + 0i) returns inf + 0i and raises the divide-by-zero flag.
ccaattaannhh(x + inf i) returns 0 + Pi/2 i, for finite positive-signed x.
ccaattaannhh(x + NaN i) returns NaN + NaN i, for non-zero finite x.
ccaattaannhh(inf + yi) returns 0 + Pi/2 i, for finite positive-signed y.
ccaattaannhh(inf + inf i) returns 0 + Pi/2 i. ccaattaannhh(inf + NaN i) returns 0 + NaN i. ccaattaannhh(NaN + yi) returns NaN + NaN i, for finite y. ccaattaannhh(NaN + inf i) returns 0 + Pi/2 i. ccaattaannhh(NaN + NaN i) returns NaN + NaN i. NNOOTTEESSSEE ALSO
ctanh(3) complex(3) STANDARDS The ccaattaannhh() function conforms to ISO/IEC 9899:1999(E). 4th Berkeley Distribution November 9, 2006 4th Berkeley Distribution