Manual Pages for UNIX Darwin command on man calculus
MyWebUniversity

Manual Pages for UNIX Darwin command on man calculus

math::calculus(n) Math math::calculus(n)

NAME

math::calculus - Integration and ordinary differential equations

SYNOPSIS

package require TTccll 88 package require mmaatthh::::ccaallccuulluuss 00..55..11 ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraall begin end nosteps func ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraallEExxpprr begin end nosteps expression ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraall22DD xinterval yinterval func ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraall33DD xinterval yinterval zinterval func ::::mmaatthh::::ccaallccuulluuss::::eeuulleerrSStteepp t tstep xvec func ::::mmaatthh::::ccaallccuulluuss::::hheeuunnSStteepp t tstep xvec func ::::mmaatthh::::ccaallccuulluuss::::rruunnggeeKKuuttttaaSStteepp t tstep xvec func

::::mmaatthh::::ccaallccuulluuss::::bboouunnddaarryyVVaalluueeSSeeccoonnddOOrrddeerr coefffunc forcefunc left-

bnd rightbnd nostep ::::mmaatthh::::ccaallccuulluuss::::ssoollvveeTTrriiDDiiaaggoonnaall acoeff bcoeff ccoeff dvalue ::::mmaatthh::::ccaallccuulluuss::::nneewwttoonnRRaapphhssoonn func deriv initval ::::mmaatthh::::ccaallccuulluuss::::nneewwttoonnRRaapphhssoonnPPaarraammeetteerrss maxiter tolerance

DESCRIPTION

This package implements several simple mathematical algorithms: +o The integration of a function over an interval +o The numerical integration of a system of ordinary differential equations. +o Estimating the root(s) of an equation of one variable. The package is fully implemented in Tcl. No particular attention has

been paid to the accuracy of the calculations. Instead, well-known

algorithms have been used in a straightforward manner. This document describes the procedures and explains their usage. PPRROOCCEEDDUURREESS This package defines the following public procedures: ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraall begin end nosteps func Determine the integral of the given function using the Simpson rule. The interval for the integration is [begin, end]. The remaining arguments are: nosteps Number of steps in which the interval is divided. func Function to be integrated. It should take one single argument. ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraallEExxpprr begin end nosteps expression Similar to the previous proc, this one determines the integral of the given expression using the Simpson rule. The interval for the integration is [begin, end]. The remaining arguments are: nosteps Number of steps in which the interval is divided. expression Expression to be integrated. It should use the variable "x" as the only variable (the "integrate") ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraall22DD xinterval yinterval func The command iinntteeggrraall22DD calculates the integral of a function of

two variables over the rectangle given by the first two argu-

ments, each a list of three items, the start and stop interval for the variable and the number of steps. The currently implemented integration is simple: the function is evaluated at the centre of each rectangle and the content of this block is added to the integral. In future this will be replaced by a bilinear interpolation. The function must take two arguments and return the function value. ::::mmaatthh::::ccaallccuulluuss::::iinntteeggrraall33DD xinterval yinterval zinterval func

The command IInntteeggrraall33DD is the three-dimensional equivalent of

iinntteeggrraall22DD. The function taking three arguments is integrated over the block in 3D space given by three intervals. ::::mmaatthh::::ccaallccuulluuss::::eeuulleerrSStteepp t tstep xvec func Set a single step in the numerical integration of a system of differential equations. The method used is Euler's. t Value of the independent variable (typically time) at the beginning of the step. tstep Step size for the independent variable. xvec List (vector) of dependent values func Function of t and the dependent values, returning a list of the derivatives of the dependent values. (The lengths of xvec and the return value of "func" must match). ::::mmaatthh::::ccaallccuulluuss::::hheeuunnSStteepp t tstep xvec func Set a single step in the numerical integration of a system of differential equations. The method used is Heun's. t Value of the independent variable (typically time) at the beginning of the step. tstep Step size for the independent variable. xvec List (vector) of dependent values func Function of t and the dependent values, returning a list of the derivatives of the dependent values. (The lengths of xvec and the return value of "func" must match). ::::mmaatthh::::ccaallccuulluuss::::rruunnggeeKKuuttttaaSStteepp t tstep xvec func Set a single step in the numerical integration of a system of

differential equations. The method used is Runge-Kutta 4th

order. t Value of the independent variable (typically time) at the beginning of the step. tstep Step size for the independent variable. xvec List (vector) of dependent values func Function of t and the dependent values, returning a list of the derivatives of the dependent values. (The lengths of xvec and the return value of "func" must match).

::::mmaatthh::::ccaallccuulluuss::::bboouunnddaarryyVVaalluueeSSeeccoonnddOOrrddeerr coefffunc forcefunc left-

bnd rightbnd nostep Solve a second order linear differential equation with boundary values at two sides. The equation has to be of the form (the "conservative" form): d dy d

- A(x)- + - B(x)y + C(x)y = D(x)

dx dx dx Ordinarily, such an equation would be written as: d2y dy

a(x)-- + b(x)- + c(x) y = D(x)

dx2 dx The first form is easier to discretise (by integrating over a finite volume) than the second form. The relation between the two forms is fairly straightforward: A(x) = a(x)

B(x) = b(x) - a'(x)

C(x) = c(x) - B'(x) = c(x) - b'(x) + a''(x)

Because of the differentiation, however, it is much easier to ask the user to provide the functions A, B and C directly. coefffunc Procedure returning the three coefficients (A, B, C) of

the equation, taking as its one argument the x-coordi-

nate. forcefunc

Procedure returning the right-hand side (D) as a function

of the x-coordinate.

leftbnd

A list of two values: the x-coordinate of the left bound-

ary and the value at that boundary. rightbnd

A list of two values: the x-coordinate of the right

boundary and the value at that boundary. nostep Number of steps by which to discretise the interval. The

procedure returns a list of x-coordinates and the approx-

imated values of the solution. ::::mmaatthh::::ccaallccuulluuss::::ssoollvveeTTrriiDDiiaaggoonnaall acoeff bcoeff ccoeff dvalue Solve a system of linear equations Ax = b with A a tridiagonal matrix. Returns the solution as a list. acoeff List of values on the lower diagonal bcoeff List of values on the main diagonal ccoeff List of values on the upper diagonal

dvalue List of values on the righthand-side

::::mmaatthh::::ccaallccuulluuss::::nneewwttoonnRRaapphhssoonn func deriv initval Determine the root of an equation given by func(x) = 0

using the method of Newton-Raphson. The procedure takes the fol-

lowing arguments: func Procedure that returns the value the function at x deriv Procedure that returns the derivative of the function at x initval Initial value for x ::::mmaatthh::::ccaallccuulluuss::::nneewwttoonnRRaapphhssoonnPPaarraammeetteerrss maxiter tolerance

Set the numerical parameters for the Newton-Raphson method:

maxiter Maximum number of iteration steps (defaults to 20) tolerance Relative precision (defaults to 0.001) Notes:

Several of the above procedures take the names of procedures as argu-

ments. To avoid problems with the visibility of these procedures, the

fully-qualified name of these procedures is determined inside the cal-

culus routines. For the user this has only one consequence: the named procedure must be visible in the calling procedure. For instance: namespace eval ::mySpace { namespace export calcfunc

proc calcfunc { x } { return $x }

}

#

# Use a fully-qualified name

#

namespace eval ::myCalc { proc detIntegral { begin end } {

return [integral $begin $end 100 ::mySpace::calcfunc]

} }

#

# Import the name

#

namespace eval ::myCalc { namespace import ::mySpace::calcfunc proc detIntegral { begin end } {

return [integral $begin $end 100 calcfunc]

} }

Enhancements for the second-order boundary value problem:

+o Other types of boundary conditions (zero gradient, zero flux)

+o Other schematisation of the first-order term (now central dif-

ferences are used, but upstream differences might be useful too). EEXXAAMMPPLLEESS Let us take a few simple examples: Integrate x over the interval [0,100] (20 steps):

proc linearfunc { x } { return $x }

puts "Integral: [::math::calculus::integral 0 100 20 linearfunc]"

For simple functions, the alternative could be:

puts "Integral: [::math::calculus::integralExpr 0 100 20 {$x}]"

Do not forget the braces! The differential equation for a dampened oscillator: x'' + rx' + wx = 0

can be split into a system of first-order equations:

x' = y

y' = -ry - wx

Then this system can be solved with code like this: proc dampenedoscillator { t xvec } {

set x [lindex $xvec 0]

set x1 [lindex $xvec 1]

return [list $x1 [expr {-$x1-$x}]]

} set xvec { 1.0 0.0 } set t 0.0 set tstep 0.1

for { set i 0 } { $i < 20 } { incr i } {

set result [::math::calculus::eulerStep $t $tstep $xvec dampenedoscillator]

puts "Result ($t): $result"

set t [expr {$t+$tstep}]

set xvec $result

} Suppose we have the boundary value problem: Dy'' + ky = 0 x = 0: y = 1 x = L: y = 0 This boundary value problem could originate from the diffusion of a decaying substance. It can be solved with the following fragment:

proc coeffs { x } { return [list $::Diff 0.0 $::decay] }

proc force { x } { return 0.0 }

set Diff 1.0e-2

set decay 0.0001 set length 100.0

set y [::math::calculus::boundaryValueSecondOrder \

coeffs force {0.0 1.0} [list $length 0.0] 100]

KKEEYYWWOORRDDSS

calculus, differential equations, integration, math, roots

math 0.5.1 math::calculus(n)




Contact us      |      About us      |      Term of use      |       Copyright © 2000-2019 MyWebUniversity.com ™