NAME
ccaaccooss - complex inverse cosine function
SYNOPSIS
double complex ccaaccooss(double complex z); long double complex ccaaccoossll(long double complex z); float complex ccaaccoossff(float complex z);DESCRIPTION
ccaaccooss(z) computes the inverse cosine of the complex floating-point number
z, with branch cuts outside the interval [-1,1] along the real axis.
ccaaccooss() returns values in a strip of the complex plane with unbounded imaginary part, and real part in the interval [0, Pi]. For all complex floating point numbers z, cacos(conj(z)) = conj(cacos(z)). SSPPEECCIIAALL VVAALLUUEESS The conjugate symmetry of cacos() is used to abbreviate the specification of special values.ccaaccooss(+-0 + 0i) returns Pi/2 - 0i.
ccaaccooss(+-0 + NaN i) returns Pi/2 + NaN i.
ccaaccooss(x + inf i) returns Pi/2 - inf i, for finite x.
ccaaccooss(x + NaN i) returns NaN + NaN i, for finite nonzero x.ccaaccooss(-inf + yi) returns Pi - inf i, for finite positive-signed y.
ccaaccooss(inf + yi) returns 0 - inf i, for finite positive-signed y.
ccaaccooss(-inf + inf i) returns 3Pi/4 - inf i.
ccaaccooss(inf + inf i) returns Pi/4 - inf i.
ccaaccooss(+-inf + NaN i) returns NaN + inf i.
ccaaccooss(NaN + yi) returns NaN + NaN i, for finite y.ccaaccooss(NaN + inf i) returns NaN - inf i.
ccaaccooss(NaN + NaN i) returns NaN + NaN i. NNOOTTEESSSEE ALSO
complex(3) STANDARDS The ccaaccooss() function conforms to ISO/IEC 9899:1999(E). 4th Berkeley Distribution November 9, 2006 4th Berkeley Distribution