NAME
MMPPIITTyyppeeiinnddeexxeedd - Creates an indexed datatype.
SSYYNNTTAAXX CC SSyynnttaaxx#include
int MPITypeindexed(int count, int *arrayofblocklengths, int *arrayofdisplacements, MPIDatatype oldtype, MPIDatatype *newtype) FFoorrttrraann SSyynnttaaxx INCLUDE 'mpif.h' MPITYPEINDEXED(COUNT, ARRAYOFBLOCKLENGTHS,ARRAYOFDISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, ARRAYOFBLOCKLENGTHS(*) INTEGER ARRAYOFDISPLACEMENTS(*), OLDTYPE, NEWTYPEINTEGER IERROR
CC++++ SSyynnttaaxx#include
Datatype Datatype::Createindexed(int count, const int arrayofblocklengths[], const int arrayofdisplacements[]) const IINNPPUUTT PPAARRAAMMEETTEERRSScount Number of blocks - also number of entries in arrayofdis-
placements and arrayofblocklengths (nonnegative integer). arrayofblocklengths Number of elements per block (array of nonnegative integers). arrayofdisplacements Displacement for each block, in multiples of oldtype extent (array of integer). oldtype Old datatype (handle). OOUUTTPPUUTT PPAARRAAMMEETTEERRSS newtype New datatype (handle).IERROR Fortran only: Error status (integer).
DESCRIPTION
The function MPITypeindexed allows replication of an old datatype into a sequence of blocks (each block is a concatenation of the old datatype), where each block can contain a different number of copiesand have a different displacement. All block displacements are multi-
ples of the old data type's extent. EExxaammppllee:: Let oldtype have type map {(double, 0), (char, 8)}, with extent 16. Let B = (3, 1) and let D = (4, 0). A call to MPITypeindexed(2, B, D, oldtype, newtype) returns a datatype with type map {(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104), (double, 0), (char, 8)} That is, three copies of the old type starting at displacement 4 x 16 = 64, and one copy starting at displacement 0. In general, assume that oldtype has type map{(type(0), disp(0)), ..., (type(n-1), disp(n-1))},
with extent ex. Let B be the arrayofblocklength argument and D be the arrayofdisplacements argument. The newly created datatype hasn x S ^count-1
i = 0 B[i] entries: {(type(0), disp(0) + D[0]* ex), ...,(type(n-1), disp(n-1) + D[0]* ex), ...,
(type(0), disp(0) + (D[0] + B[0]-1)* ex), ...,
(type(n-1), disp(n-1) + (D[0]+ B[0]-1)* ex), ...,
(type(0), disp(0) + D[count-1]* ex), ...,
(type(n-1), disp(n-1) + D[count-1]* ex), ...,
(type(0), disp(0) + (D[count-1] + B[count-1] -1)* ex), ...,
(type(n-1), disp(n-1) + (D[count-1] + B[count-1] -1)* ex)}
A call to MPITypevector(count, blocklength, stride, oldtype, newtype)is equivalent to a call to MPITypeindexed(count, B, D, oldtype, new-
type) whereD[j] = j * stride, j = 0,..., count-1
andB[j] = blocklength, j = 0, .., count-1
EERRRROORRSS Almost all MPI routines return an error value; C routines as the valueof the function and Fortran routines in the last argument. C++ func-
tions do not return errors. If the default error handler is set toMPI::ERRORSTHROWEXCEPTIONS, then on error the C++ exception mechanism
will be used to throw an MPI:Exception object. Before the error value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job, except for I/O function errors. The error handler may be changed withMPICommseterrhandler; the predefined error handler MPIERRORSRETURN
may be used to cause error values to be returned. Note that MPI does not guarantee that an MPI program can continue past an error.SEE ALSO
MPITypecreatehindexed MPITypehindexed Open MPI 1.2 September 2006 MPITypeindexed(3OpenMPI)