Manual Pages for UNIX Darwin command on man MPI_Gatherv
MyWebUniversity

Manual Pages for UNIX Darwin command on man MPI_Gatherv

MPIGatherv(3OpenMPI) MPIGatherv(3OpenMPI)

NAME

MMPPIIGGaatthheerrvv - Gathers varying amounts of data from all processes to the

root process SSYYNNTTAAXX CC SSyynnttaaxx

#include

int MPIGatherv(void *sendbuf, int sendcount, MPIDatatype sendtype, void *recvbuf, int *recvcounts, int *displs, MPIDatatype recvtype, int root, MPIComm comm) FFoorrttrraann SSyynnttaaxx INCLUDE 'mpif.h' MPIGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, ROOT, COMM, IERROR)

SENDBUF(*), RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)

INTEGER RECVTYPE, ROOT, COMM, IERROR

CC++++ SSyynnttaaxx

#include

void MPI::Comm::Gatherv(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype, void* recvbuf, const int recvcounts[], const int displs[], const MPI::Datatype& recvtype, int root) const = 0 IINNPPUUTT PPAARRAAMMEETTEERRSS sendbuf Starting address of send buffer (choice). sendcount Number of elements in send buffer (integer). sendtype Datatype of send buffer elements (handle). recvcounts Integer array (of length group size) containing the number of elements that are received from each process (significant only at root). displs Integer array (of length group size). Entry i specifies the

displacement relative to recvbuf at which to place the incom-

ing data from process i (significant only at root). recvtype Datatype of recv buffer elements (significant only at root) (handle). root Rank of receiving process (integer). comm Communicator (handle). OOUUTTPPUUTT PPAARRAAMMEETTEERRSS recvbuf Address of receive buffer (choice, significant only at root).

IERROR Fortran only: Error status (integer).

DESCRIPTION

MPIGatherv extends the functionality of MPIGather by allowing a vary-

ing count of data from each process, since recvcounts is now an array. It also allows more flexibility as to where the data is placed on the root, by providing the new argument, displs. The outcome is as if each process, including the root process, sends a message to the root, MPISend(sendbuf, sendcount, sendtype, root, ...) and the root executes n receives, MPIRecv(recvbuf + disp[i] * extent(recvtype), \ recvcounts[i], recvtype, i, ...) Messages are placed in the receive buffer of the root process in rank

order, that is, the data sent from process j is placed in the jth por-

tion of the receive buffer recvbuf on process root. The jth portion of recvbuf begins at offset displs[j] elements (in terms of recvtype) into recvbuf. The receive buffer is ignored for all nonroot processes. The type signature implied by sendcount, sendtype on process i must be equal to the type signature implied by recvcounts[i], recvtype at the root. This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed, as illustrated in Example 2, below. All arguments to the function are significant on process root, while on other processes, only arguments sendbuf, sendcount, sendtype, root, comm are significant. The arguments root and comm must have identical values on all processes. The specification of counts, types, and displacements should not cause any location on the root to be written more than once. Such a call is erroneous. EExxaammppllee 11:: Now have each process send 100 ints to root, but place each set (of 100) stride ints apart at receiving end. Use MPIGatherv and the displs argument to achieve this effect. Assume stride >= 100. MPIComm comm; int gsize,sendarray[100]; int root, *rbuf, stride; int *displs,i,*rcounts; ... MPICommsize(comm, &gsize); rbuf = (int *)malloc(gsize*stride*sizeof(int)); displs = (int *)malloc(gsize*sizeof(int)); rcounts = (int *)malloc(gsize*sizeof(int)); for (i=0; i EExxaammppllee 33:: Process i sends (100-i) ints from the ith column of a 100 x

150 int array, in C. It is received into a buffer with stride, as in the previous two examples. MPIComm comm; int gsize,sendarray[100][150],*sptr; int root, *rbuf, stride, myrank; MPIDatatype stype; int *displs,i,*rcounts; ... MPICommsize(comm, &gsize); MPICommrank( comm, &myrank ); rbuf = (int *)malloc(gsize*stride*sizeof(int)); displs = (int *)malloc(gsize*sizeof(int)); rcounts = (int *)malloc(gsize*sizeof(int)); for (i=0; i rcounts[i] = 100-i; /* note change from previous example */

} /* Create datatype for the column we are sending */

MPITypevector(100-myrank, 1, 150, MPIINT, &stype);

MPITypecommit( &stype ); /* sptr is the address of start of "myrank" column */ sptr = &sendarray[0][myrank]; MPIGatherv(sptr, 1, stype, rbuf, rcounts, displs, MPIINT, root, comm); Note that a different amount of data is received from each process.

EExxaammppllee 44:: Same as Example 3, but done in a different way at the send-

ing end. We create a datatype that causes the correct striding at the sending end so that we read a column of a C array. MPIComm comm; int gsize,sendarray[100][150],*sptr; int root, *rbuf, stride, myrank, disp[2], blocklen[2]; MPIDatatype stype,type[2]; int *displs,i,*rcounts; ... MPICommsize(comm, &gsize); MPICommrank( comm, &myrank ); rbuf = (int *)alloc(gsize*stride*sizeof(int)); displs = (int *)malloc(gsize*sizeof(int)); rcounts = (int *)malloc(gsize*sizeof(int)); for (i=0; i rcounts[i] = 100-i;

} /* Create datatype for one int, with extent of entire row */ disp[0] = 0; disp[1] = 150*sizeof(int); type[0] = MPIINT; type[1] = MPIUB; blocklen[0] = 1; blocklen[1] = 1; MPITypestruct( 2, blocklen, disp, type, &stype ); MPITypecommit( &stype ); sptr = &sendarray[0][myrank];

MPIGatherv(sptr, 100-myrank, stype, rbuf, rcounts,

displs, MPIINT, root, comm); EExxaammppllee 55:: Same as Example 3 at sending side, but at receiving side we make the stride between received blocks vary from block to block. MPIComm comm; int gsize,sendarray[100][150],*sptr; int root, *rbuf, *stride, myrank, bufsize; MPIDatatype stype; int *displs,i,*rcounts,offset; ... MPICommsize( comm, &gsize); MPICommrank( comm, &myrank ); stride = (int *)malloc(gsize*sizeof(int)); ...

/* stride[i] for i = 0 to gsize-1 is set somehow

*/ /* set up displs and rcounts vectors first */ displs = (int *)malloc(gsize*sizeof(int)); rcounts = (int *)malloc(gsize*sizeof(int)); offset = 0; for (i=0; i rcounts[i] = 100-i;

} /* the required buffer size for rbuf is now easily obtained */

bufsize = displs[gsize-1]+rcounts[gsize-1];

rbuf = (int *)malloc(bufsize*sizeof(int)); /* Create datatype for the column we are sending */

MPITypevector(100-myrank, 1, 150, MPIINT, &stype);

MPITypecommit( &stype ); sptr = &sendarray[0][myrank]; MPIGatherv(sptr, 1, stype, rbuf, rcounts, displs, MPIINT, root, comm); EExxaammppllee 66:: Process i sends num ints from the ith column of a 100 x 150 int array, in C. The complicating factor is that the various values of num are not known to root, so a separate gather must first be run to find these out. The data is placed contiguously at the receiving end. MPIComm comm; int gsize,sendarray[100][150],*sptr; int root, *rbuf, stride, myrank, disp[2], blocklen[2]; MPIDatatype stype,types[2]; int *displs,i,*rcounts,num; ... MPICommsize( comm, &gsize); MPICommrank( comm, &myrank ); /* First, gather nums to root */ rcounts = (int *)malloc(gsize*sizeof(int)); MPIGather( &num, 1, MPIINT, rcounts, 1, MPIINT, root, comm); /* root now has correct rcounts, using these we set * displs[] so that data is placed contiguously (or * concatenated) at receive end */ displs = (int *)malloc(gsize*sizeof(int)); displs[0] = 0; for (i=1; i displs[i] = displs[i-1]+rcounts[i-1];

} /* And, create receive buffer */

rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])

*sizeof(int)); /* Create datatype for one int, with extent of entire row */ disp[0] = 0; disp[1] = 150*sizeof(int); type[0] = MPIINT; type[1] = MPIUB; blocklen[0] = 1; blocklen[1] = 1; MPITypestruct( 2, blocklen, disp, type, &stype ); MPITypecommit( &stype ); sptr = &sendarray[0][myrank]; MPIGatherv(sptr, num, stype, rbuf, rcounts, displs, MPIINT, root, comm);

UUSSEE OOFF IINN-PPLLAACCEE OOPPTTIIOONN

The in-place option operates in the same way as it does for MPIGather.

When the communicator is an intracommunicator, you can perform a gather

operation in-place (the output buffer is used as the input buffer).

Use the variable MPIINPLACE as the value of the root process sendbuf. In this case, sendcount and sendtype are ignored, and the contribution of the root process to the gathered vector is assumed to already be in the correct place in the receive buffer. Note that MPIINPLACE is a special kind of value; it has the same restrictions on its use as MPIBOTTOM.

Because the in-place option converts the receive buffer into a send-

and-receive buffer, a Fortran binding that includes INTENT must mark

these as INOUT, not OUT.

WWHHEENN CCOOMMMMUUNNIICCAATTOORR IISS AANN IINNTTEERR-CCOOMMMMUUNNIICCAATTOORR

When the communicator is an inter-communicator, the root process in the

first group gathers data from all the processes in the second group. The first group defines the root process. That process uses MPIROOT as the value of its root argument. The remaining processes use MPIPROCNULL as the value of their root argument. All processes in the second group use the rank of that root process in the first group as the value of their root argument. The send buffer argument of the processes in the first group must be consistent with the receive buffer argument of the root process in the second group. EERRRROORRSS Almost all MPI routines return an error value; C routines as the value

of the function and Fortran routines in the last argument. C++ func-

tions do not return errors. If the default error handler is set to

MPI::ERRORSTHROWEXCEPTIONS, then on error the C++ exception mechanism

will be used to throw an MPI:Exception object. Before the error value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job, except for I/O function errors. The error handler may be changed with

MPICommseterrhandler; the predefined error handler MPIERRORSRETURN

may be used to cause error values to be returned. Note that MPI does not guarantee that an MPI program can continue past an error.

SEE ALSO

MPIGather MPIScatter MPIScatterv Open MPI 1.2 September 2006 MPIGatherv(3OpenMPI)




Contact us      |      About us      |      Term of use      |       Copyright © 2000-2019 MyWebUniversity.com ™