
Rocky Enterprise Linux 9.2 Manual Pages on command 'zstdcat.1'

$ man zstdcat.1

ZSTD(1) User Commands ZSTD(1)

NAME

 zstd - zstd, zstdmt, unzstd, zstdcat - Compress or decompress .zst files

SYNOPSIS

 zstd [OPTIONS] [-|INPUT-FILE] [-o OUTPUT-FILE]

 zstdmt is equivalent to zstd -T0

 unzstd is equivalent to zstd -d

 zstdcat is equivalent to zstd -dcf

DESCRIPTION

 zstd is a fast lossless compression algorithm and data compression tool, with command line

 syntax similar to gzip (1) and xz (1). It is based on the LZ77 family, with further FSE &

 huff0 entropy stages. zstd offers highly configurable compression speed, with fast modes

 at > 200 MB/s per core, and strong modes nearing lzma compression ratios. It also features

 a very fast decoder, with speeds > 500 MB/s per core.

 zstd command line syntax is generally similar to gzip, but features the following differ?

 ences :

 ? Source files are preserved by default. It?s possible to remove them automatically by

 using the --rm command.

 ? When compressing a single file, zstd displays progress notifications and result sum?

 mary by default. Use -q to turn them off.

 ? zstd does not accept input from console, but it properly accepts stdin when it?s not

 the console.

 ? zstd displays a short help page when command line is an error. Use -q to turn it off. Page 1/13

 zstd compresses or decompresses each file according to the selected operation mode. If no

 files are given or file is -, zstd reads from standard input and writes the processed data

 to standard output. zstd will refuse to write compressed data to standard output if it is

 a terminal : it will display an error message and skip the file. Similarly, zstd will

 refuse to read compressed data from standard input if it is a terminal.

 Unless --stdout or -o is specified, files are written to a new file whose name is derived

 from the source file name:

 ? When compressing, the suffix .zst is appended to the source filename to get the target

 filename.

 ? When decompressing, the .zst suffix is removed from the source filename to get the

 target filename

 Concatenation with .zst files

 It is possible to concatenate .zst files as is. zstd will decompress such files as if they

 were a single .zst file.

OPTIONS

 Integer suffixes and special values

 In most places where an integer argument is expected, an optional suffix is supported to

 easily indicate large integers. There must be no space between the integer and the suffix.

 KiB Multiply the integer by 1,024 (2^10). Ki, K, and KB are accepted as synonyms for

 KiB.

 MiB Multiply the integer by 1,048,576 (2^20). Mi, M, and MB are accepted as synonyms

 for MiB.

 Operation mode

 If multiple operation mode options are given, the last one takes effect.

 -z, --compress

 Compress. This is the default operation mode when no operation mode option is spec?

 ified and no other operation mode is implied from the command name (for example,

 unzstd implies --decompress).

 -d, --decompress, --uncompress

 Decompress.

 -t, --test

 Test the integrity of compressed files. This option is equivalent to --decompress

 --stdout except that the decompressed data is discarded instead of being written to Page 2/13

 standard output. No files are created or removed.

 -b# Benchmark file(s) using compression level #

 --train FILEs

 Use FILEs as a training set to create a dictionary. The training set should contain

 a lot of small files (> 100).

 -l, --list

 Display information related to a zstd compressed file, such as size, ratio, and

 checksum. Some of these fields may not be available. This command can be augmented

 with the -v modifier.

 Operation modifiers

 ? -#: # compression level [1-19] (default: 3)

 ? --ultra: unlocks high compression levels 20+ (maximum 22), using a lot more memory.

 Note that decompression will also require more memory when using these levels.

 ? --fast[=#]: switch to ultra-fast compression levels. If =# is not present, it defaults

 to 1. The higher the value, the faster the compression speed, at the cost of some com?

 pression ratio. This setting overwrites compression level if one was set previously.

 Similarly, if a compression level is set after --fast, it overrides it.

 ? -T#, --threads=#: Compress using # working threads (default: 1). If # is 0, attempt to

 detect and use the number of physical CPU cores. In all cases, the nb of threads is

 capped to ZSTDMT_NBWORKERS_MAX==200. This modifier does nothing if zstd is compiled

 without multithread support.

 ? --single-thread: Does not spawn a thread for compression, use a single thread for both

 I/O and compression. In this mode, compression is serialized with I/O, which is

 slightly slower. (This is different from -T1, which spawns 1 compression thread in

 parallel of I/O). This mode is the only one available when multithread support is dis?

 abled. Single-thread mode features lower memory usage. Final compressed result is

 slightly different from -T1.

 ? --adapt[=min=#,max=#] : zstd will dynamically adapt compression level to perceived I/O

 conditions. Compression level adaptation can be observed live by using command -v.

 Adaptation can be constrained between supplied min and max levels. The feature works

 when combined with multi-threading and --long mode. It does not work with --sin?

 gle-thread. It sets window size to 8 MB by default (can be changed manually, see

 wlog). Due to the chaotic nature of dynamic adaptation, compressed result is not re? Page 3/13

 producible. note : at the time of this writing, --adapt can remain stuck at low speed

 when combined with multiple worker threads (>=2).

 ? --long[=#]: enables long distance matching with # windowLog, if not # is not present

 it defaults to 27. This increases the window size (windowLog) and memory usage for

 both the compressor and decompressor. This setting is designed to improve the compres?

 sion ratio for files with long matches at a large distance.

 Note: If windowLog is set to larger than 27, --long=windowLog or --memory=windowSize

 needs to be passed to the decompressor.

 ? -D DICT: use DICT as Dictionary to compress or decompress FILE(s)

 ? --patch-from FILE: Specify the file to be used as a reference point for zstd?s diff

 engine. This is effectively dictionary compression with some convenient parameter se?

 lection, namely that windowSize > srcSize.

 Note: cannot use both this and -D together Note: --long mode will be automatically ac?

 tivated if chainLog < fileLog (fileLog being the windowLog required to cover the whole

 file). You can also manually force it. Node: for all levels, you can use --patch-from

 in --single-thread mode to improve compression ratio at the cost of speed Note: for

 level 19, you can get increased compression ratio at the cost of speed by specifying

 --zstd=targetLength= to be something large (i.e 4096), and by setting a large

 --zstd=chainLog=

 ? --rsyncable : zstd will periodically synchronize the compression state to make the

 compressed file more rsync-friendly. There is a negligible impact to compression ra?

 tio, and the faster compression levels will see a small compression speed hit. This

 feature does not work with --single-thread. You probably don?t want to use it with

 long range mode, since it will decrease the effectiveness of the synchronization

 points, but your milage may vary.

 ? -C, --[no-]check: add integrity check computed from uncompressed data (default: en?

 abled)

 ? --[no-]content-size: enable / disable whether or not the original size of the file is

 placed in the header of the compressed file. The default option is --content-size

 (meaning that the original size will be placed in the header).

 ? --no-dictID: do not store dictionary ID within frame header (dictionary compression).

 The decoder will have to rely on implicit knowledge about which dictionary to use, it

 won?t be able to check if it?s correct. Page 4/13

 ? -M#, --memory=#: Set a memory usage limit. By default, Zstandard uses 128 MB for de?

 compression as the maximum amount of memory the decompressor is allowed to use, but

 you can override this manually if need be in either direction (ie. you can increase or

 decrease it).

 This is also used during compression when using with --patch-from=. In this case, this

 parameter overrides that maximum size allowed for a dictionary. (128 MB).

 ? --stream-size=# : Sets the pledged source size of input coming from a stream. This

 value must be exact, as it will be included in the produced frame header. Incorrect

 stream sizes will cause an error. This information will be used to better optimize

 compression parameters, resulting in better and potentially faster compression, espe?

 cially for smaller source sizes.

 ? --size-hint=#: When handling input from a stream, zstd must guess how large the source

 size will be when optimizing compression parameters. If the stream size is relatively

 small, this guess may be a poor one, resulting in a higher compression ratio than ex?

 pected. This feature allows for controlling the guess when needed. Exact guesses re?

 sult in better compression ratios. Overestimates result in slightly degraded compres?

 sion ratios, while underestimates may result in significant degradation.

 ? -o FILE: save result into FILE

 ? -f, --force: overwrite output without prompting, and (de)compress symbolic links

 ? -c, --stdout: force write to standard output, even if it is the console

 ? --[no-]sparse: enable / disable sparse FS support, to make files with many zeroes

 smaller on disk. Creating sparse files may save disk space and speed up decompression

 by reducing the amount of disk I/O. default: enabled when output is into a file, and

 disabled when output is stdout. This setting overrides default and can force sparse

 mode over stdout.

 ? --rm: remove source file(s) after successful compression or decompression. If used in

 combination with -o, will trigger a confirmation prompt (which can be silenced with

 -f), as this is a destructive operation.

 ? -k, --keep: keep source file(s) after successful compression or decompression. This is

 the default behavior.

 ? -r: operate recursively on directories

 ? --filelist FILE read a list of files to process as content from FILE. Format is com?

 patible with ls output, with one file per line. Page 5/13

 ? --output-dir-flat DIR: resulting files are stored into target DIR directory, instead

 of same directory as origin file. Be aware that this command can introduce name colli?

 sion issues, if multiple files, from different directories, end up having the same

 name. Collision resolution ensures first file with a given name will be present in

 DIR, while in combination with -f, the last file will be present instead.

 ? --output-dir-mirror DIR: similar to --output-dir-flat, the output files are stored un?

 derneath target DIR directory, but this option will replicate input directory hierar?

 chy into output DIR.

 If input directory contains "..", the files in this directory will be ignored. If in?

 put directory is an absolute directory (i.e. "/var/tmp/abc"), it will be stored into

 the "output-dir/var/tmp/abc". If there are multiple input files or directories, name

 collision resolution will follow the same rules as --output-dir-flat.

 ? --format=FORMAT: compress and decompress in other formats. If compiled with support,

 zstd can compress to or decompress from other compression algorithm formats. Possibly

 available options are zstd, gzip, xz, lzma, and lz4. If no such format is provided,

 zstd is the default.

 ? -h/-H, --help: display help/long help and exit

 ? -V, --version: display version number and exit. Advanced : -vV also displays supported

 formats. -vvV also displays POSIX support. -q will only display the version number,

 suitable for machine reading.

 ? -v, --verbose: verbose mode, display more information

 ? -q, --quiet: suppress warnings, interactivity, and notifications. specify twice to

 suppress errors too.

 ? --no-progress: do not display the progress bar, but keep all other messages.

 ? --show-default-cparams: Shows the default compression parameters that will be used for

 a particular src file. If the provided src file is not a regular file (eg. named

 pipe), the cli will just output the default parameters. That is, the parameters that

 are used when the src size is unknown.

 ? --: All arguments after -- are treated as files

 Restricted usage of Environment Variables

 Using environment variables to set parameters has security implications. Therefore, this

 avenue is intentionally restricted. Only ZSTD_CLEVEL and ZSTD_NBTHREADS are currently sup?

 ported. They set the compression level and number of threads to use during compression, Page 6/13

 respectively.

 ZSTD_CLEVEL can be used to set the level between 1 and 19 (the "normal" range). If the

 value of ZSTD_CLEVEL is not a valid integer, it will be ignored with a warning message.

 ZSTD_CLEVEL just replaces the default compression level (3).

 ZSTD_NBTHREADS can be used to set the number of threads zstd will attempt to use during

 compression. If the value of ZSTD_NBTHREADS is not a valid unsigned integer, it will be

 ignored with a warning message. ?ZSTD_NBTHREADShas a default value of (1), and is capped

 at ZSTDMT_NBWORKERS_MAX==200.zstd` must be compiled with multithread support for this to

 have any effect.

 They can both be overridden by corresponding command line arguments: -# for compression

 level and -T# for number of compression threads.

DICTIONARY BUILDER

 zstd offers dictionary compression, which greatly improves efficiency on small files and

 messages. It?s possible to train zstd with a set of samples, the result of which is saved

 into a file called a dictionary. Then during compression and decompression, reference the

 same dictionary, using command -D dictionaryFileName. Compression of small files similar

 to the sample set will be greatly improved.

 --train FILEs

 Use FILEs as training set to create a dictionary. The training set should contain a

 lot of small files (> 100), and weight typically 100x the target dictionary size

 (for example, 10 MB for a 100 KB dictionary).

 Supports multithreading if zstd is compiled with threading support. Additional pa?

 rameters can be specified with --train-fastcover. The legacy dictionary builder can

 be accessed with --train-legacy. The cover dictionary builder can be accessed with

 --train-cover. Equivalent to --train-fastcover=d=8,steps=4.

 -o file

 Dictionary saved into file (default name: dictionary).

 --maxdict=#

 Limit dictionary to specified size (default: 112640).

 -# Use # compression level during training (optional). Will generate statistics more

 tuned for selected compression level, resulting in a small compression ratio im?

 provement for this level.

 -B# Split input files in blocks of size # (default: no split) Page 7/13

 --dictID=#

 A dictionary ID is a locally unique ID that a decoder can use to verify it is using

 the right dictionary. By default, zstd will create a 4-bytes random number ID. It?s

 possible to give a precise number instead. Short numbers have an advantage : an ID

 < 256 will only need 1 byte in the compressed frame header, and an ID < 65536 will

 only need 2 bytes. This compares favorably to 4 bytes default. However, it?s up to

 the dictionary manager to not assign twice the same ID to 2 different dictionaries.

 --train-cover[=k#,d=#,steps=#,split=#,shrink[=#]]

 Select parameters for the default dictionary builder algorithm named cover. If d is

 not specified, then it tries d = 6 and d = 8. If k is not specified, then it tries

 steps values in the range [50, 2000]. If steps is not specified, then the default

 value of 40 is used. If split is not specified or split <= 0, then the default

 value of 100 is used. Requires that d <= k. If shrink flag is not used, then the

 default value for shrinkDict of 0 is used. If shrink is not specified, then the de?

 fault value for shrinkDictMaxRegression of 1 is used.

 Selects segments of size k with highest score to put in the dictionary. The score

 of a segment is computed by the sum of the frequencies of all the subsegments of

 size d. Generally d should be in the range [6, 8], occasionally up to 16, but the

 algorithm will run faster with d <= 8. Good values for k vary widely based on the

 input data, but a safe range is [2 * d, 2000]. If split is 100, all input samples

 are used for both training and testing to find optimal d and k to build dictionary.

 Supports multithreading if zstd is compiled with threading support. Having shrink

 enabled takes a truncated dictionary of minimum size and doubles in size until com?

 pression ratio of the truncated dictionary is at most shrinkDictMaxRegression%

 worse than the compression ratio of the largest dictionary.

 Examples:

 zstd --train-cover FILEs

 zstd --train-cover=k=50,d=8 FILEs

 zstd --train-cover=d=8,steps=500 FILEs

 zstd --train-cover=k=50 FILEs

 zstd --train-cover=k=50,split=60 FILEs

 zstd --train-cover=shrink FILEs

 zstd --train-cover=shrink=2 FILEs Page 8/13

 --train-fastcover[=k#,d=#,f=#,steps=#,split=#,accel=#]

 Same as cover but with extra parameters f and accel and different default value of

 split If split is not specified, then it tries split = 75. If f is not specified,

 then it tries f = 20. Requires that 0 < f < 32. If accel is not specified, then it

 tries accel = 1. Requires that 0 < accel <= 10. Requires that d = 6 or d = 8.

 f is log of size of array that keeps track of frequency of subsegments of size d.

 The subsegment is hashed to an index in the range [0,2^f - 1]. It is possible that

 2 different subsegments are hashed to the same index, and they are considered as

 the same subsegment when computing frequency. Using a higher f reduces collision

 but takes longer.

 Examples:

 zstd --train-fastcover FILEs

 zstd --train-fastcover=d=8,f=15,accel=2 FILEs

 --train-legacy[=selectivity=#]

 Use legacy dictionary builder algorithm with the given dictionary selectivity (de?

 fault: 9). The smaller the selectivity value, the denser the dictionary, improving

 its efficiency but reducing its possible maximum size. --train-legacy=s=# is also

 accepted.

 Examples:

 zstd --train-legacy FILEs

 zstd --train-legacy=selectivity=8 FILEs

BENCHMARK

 -b# benchmark file(s) using compression level #

 -e# benchmark file(s) using multiple compression levels, from -b# to -e# (inclusive)

 -i# minimum evaluation time, in seconds (default: 3s), benchmark mode only

 -B#, --block-size=#

 cut file(s) into independent blocks of size # (default: no block)

 --priority=rt

 set process priority to real-time

 Output Format: CompressionLevel#Filename : IntputSize -> OutputSize (CompressionRatio),

 CompressionSpeed, DecompressionSpeed

 Methodology: For both compression and decompression speed, the entire input is com?

 pressed/decompressed in-memory to measure speed. A run lasts at least 1 sec, so when files Page 9/13

 are small, they are compressed/decompressed several times per run, in order to improve

 measurement accuracy.

ADVANCED COMPRESSION OPTIONS

 --zstd[=options]:

 zstd provides 22 predefined compression levels. The selected or default predefined com?

 pression level can be changed with advanced compression options. The options are provided

 as a comma-separated list. You may specify only the options you want to change and the

 rest will be taken from the selected or default compression level. The list of available

 options:

 strategy=strat, strat=strat

 Specify a strategy used by a match finder.

 There are 9 strategies numbered from 1 to 9, from faster to stronger: 1=ZSTD_fast,

 2=ZSTD_dfast, 3=ZSTD_greedy, 4=ZSTD_lazy, 5=ZSTD_lazy2, 6=ZSTD_btlazy2,

 7=ZSTD_btopt, 8=ZSTD_btultra, 9=ZSTD_btultra2.

 windowLog=wlog, wlog=wlog

 Specify the maximum number of bits for a match distance.

 The higher number of increases the chance to find a match which usually improves

 compression ratio. It also increases memory requirements for the compressor and de?

 compressor. The minimum wlog is 10 (1 KiB) and the maximum is 30 (1 GiB) on 32-bit

 platforms and 31 (2 GiB) on 64-bit platforms.

 Note: If windowLog is set to larger than 27, --long=windowLog or --memory=window?

 Size needs to be passed to the decompressor.

 hashLog=hlog, hlog=hlog

 Specify the maximum number of bits for a hash table.

 Bigger hash tables cause less collisions which usually makes compression faster,

 but requires more memory during compression.

 The minimum hlog is 6 (64 B) and the maximum is 30 (1 GiB).

 chainLog=clog, clog=clog

 Specify the maximum number of bits for a hash chain or a binary tree.

 Higher numbers of bits increases the chance to find a match which usually improves

 compression ratio. It also slows down compression speed and increases memory re?

 quirements for compression. This option is ignored for the ZSTD_fast strategy.

 The minimum clog is 6 (64 B) and the maximum is 29 (524 Mib) on 32-bit platforms Page 10/13

 and 30 (1 Gib) on 64-bit platforms.

 searchLog=slog, slog=slog

 Specify the maximum number of searches in a hash chain or a binary tree using loga?

 rithmic scale.

 More searches increases the chance to find a match which usually increases compres?

 sion ratio but decreases compression speed.

 The minimum slog is 1 and the maximum is ?windowLog? - 1.

 minMatch=mml, mml=mml

 Specify the minimum searched length of a match in a hash table.

 Larger search lengths usually decrease compression ratio but improve decompression

 speed.

 The minimum mml is 3 and the maximum is 7.

 targetLength=tlen, tlen=tlen

 The impact of this field vary depending on selected strategy.

 For ZSTD_btopt, ZSTD_btultra and ZSTD_btultra2, it specifies the minimum match

 length that causes match finder to stop searching. A larger targetLength usually

 improves compression ratio but decreases compression speed. t For ZSTD_fast, it

 triggers ultra-fast mode when > 0. The value represents the amount of data skipped

 between match sampling. Impact is reversed : a larger targetLength increases com?

 pression speed but decreases compression ratio.

 For all other strategies, this field has no impact.

 The minimum tlen is 0 and the maximum is 128 Kib.

 overlapLog=ovlog, ovlog=ovlog

 Determine overlapSize, amount of data reloaded from previous job. This parameter is

 only available when multithreading is enabled. Reloading more data improves com?

 pression ratio, but decreases speed.

 The minimum ovlog is 0, and the maximum is 9. 1 means "no overlap", hence com?

 pletely independent jobs. 9 means "full overlap", meaning up to windowSize is

 reloaded from previous job. Reducing ovlog by 1 reduces the reloaded amount by a

 factor 2. For example, 8 means "windowSize/2", and 6 means "windowSize/8". Value 0

 is special and means "default" : ovlog is automatically determined by zstd. In

 which case, ovlog will range from 6 to 9, depending on selected strat.

 ldmHashLog=lhlog, lhlog=lhlog Page 11/13

 Specify the maximum size for a hash table used for long distance matching.

 This option is ignored unless long distance matching is enabled.

 Bigger hash tables usually improve compression ratio at the expense of more memory

 during compression and a decrease in compression speed.

 The minimum lhlog is 6 and the maximum is 30 (default: 20).

 ldmMinMatch=lmml, lmml=lmml

 Specify the minimum searched length of a match for long distance matching.

 This option is ignored unless long distance matching is enabled.

 Larger/very small values usually decrease compression ratio.

 The minimum lmml is 4 and the maximum is 4096 (default: 64).

 ldmBucketSizeLog=lblog, lblog=lblog

 Specify the size of each bucket for the hash table used for long distance matching.

 This option is ignored unless long distance matching is enabled.

 Larger bucket sizes improve collision resolution but decrease compression speed.

 The minimum lblog is 1 and the maximum is 8 (default: 3).

 ldmHashRateLog=lhrlog, lhrlog=lhrlog

 Specify the frequency of inserting entries into the long distance matching hash ta?

 ble.

 This option is ignored unless long distance matching is enabled.

 Larger values will improve compression speed. Deviating far from the default value

 will likely result in a decrease in compression ratio.

 The default value is wlog - lhlog.

 Example

 The following parameters sets advanced compression options to something similar to prede?

 fined level 19 for files bigger than 256 KB:

 --zstd=wlog=23,clog=23,hlog=22,slog=6,mml=3,tlen=48,strat=6

 -B#:

 Select the size of each compression job. This parameter is available only when

 multi-threading is enabled. Default value is 4 * windowSize, which means it varies depend?

 ing on compression level. -B# makes it possible to select a custom value. Note that job

 size must respect a minimum value which is enforced transparently. This minimum is either

 1 MB, or overlapSize, whichever is largest.

BUGS Page 12/13

 Report bugs at: https://github.com/facebook/zstd/issues

AUTHOR

 Yann Collet

zstd 1.4.8 December 2020 ZSTD(1)

Page 13/13

