
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshroadmap.1'

$ man zshroadmap.1

ZSHROADMAP(1) General Commands Manual ZSHROADMAP(1)

NAME

 zshroadmap - informal introduction to the zsh manual The Zsh Manual, like the shell it?

 self, is large and often complicated. This section of the manual provides some pointers

 to areas of the shell that are likely to be of particular interest to new users, and indi?

 cates where in the rest of the manual the documentation is to be found.

WHEN THE SHELL STARTS

 When it starts, the shell reads commands from various files. These can be created or

 edited to customize the shell. See the section Startup/Shutdown Files in zsh(1).

 If no personal initialization files exist for the current user, a function is run to help

 you change some of the most common settings. It won't appear if your administrator has

 disabled the zsh/newuser module. The function is designed to be self-explanatory. You

 can run it by hand with `autoload -Uz zsh-newuser-install; zsh-newuser-install -f'. See

 also the section User Configuration Functions in zshcontrib(1).

INTERACTIVE USE

 Interaction with the shell uses the builtin Zsh Line Editor, ZLE. This is described in

 detail in zshzle(1).

 The first decision a user must make is whether to use the Emacs or Vi editing mode as the

 keys for editing are substantially different. Emacs editing mode is probably more natural

 for beginners and can be selected explicitly with the command bindkey -e.

 A history mechanism for retrieving previously typed lines (most simply with the Up or Down

 arrow keys) is available; note that, unlike other shells, zsh will not save these lines

 when the shell exits unless you set appropriate variables, and the number of history lines Page 1/4

 retained by default is quite small (30 lines). See the description of the shell variables

 (referred to in the documentation as parameters) HISTFILE, HISTSIZE and SAVEHIST in zsh?

 param(1). Note that it's currently only possible to read and write files saving history

 when the shell is interactive, i.e. it does not work from scripts.

 The shell now supports the UTF-8 character set (and also others if supported by the oper?

 ating system). This is (mostly) handled transparently by the shell, but the degree of

 support in terminal emulators is variable. There is some discussion of this in the shell

 FAQ, http://www.zsh.org/FAQ/. Note in particular that for combining characters to be han?

 dled the option COMBINING_CHARS needs to be set. Because the shell is now more sensitive

 to the definition of the character set, note that if you are upgrading from an older ver?

 sion of the shell you should ensure that the appropriate variable, either LANG (to affect

 all aspects of the shell's operation) or LC_CTYPE (to affect only the handling of charac?

 ter sets) is set to an appropriate value. This is true even if you are using a sin?

 gle-byte character set including extensions of ASCII such as ISO-8859-1 or ISO-8859-15.

 See the description of LC_CTYPE in zshparam(1).

 Completion

 Completion is a feature present in many shells. It allows the user to type only a part

 (usually the prefix) of a word and have the shell fill in the rest. The completion system

 in zsh is programmable. For example, the shell can be set to complete email addresses in

 arguments to the mail command from your ~/.abook/addressbook; usernames, hostnames, and

 even remote paths in arguments to scp, and so on. Anything that can be written in or

 glued together with zsh can be the source of what the line editor offers as possible com?

 pletions.

 Zsh has two completion systems, an old, so called compctl completion (named after the

 builtin command that serves as its complete and only user interface), and a new one, re?

 ferred to as compsys, organized as library of builtin and user-defined functions. The two

 systems differ in their interface for specifying the completion behavior. The new system

 is more customizable and is supplied with completions for many commonly used commands; it

 is therefore to be preferred.

 The completion system must be enabled explicitly when the shell starts. For more informa?

 tion see zshcompsys(1).

 Extending the line editor

 Apart from completion, the line editor is highly extensible by means of shell functions. Page 2/4

 Some useful functions are provided with the shell; they provide facilities such as:

 insert-composed-char

 composing characters not found on the keyboard

 match-words-by-style

 configuring what the line editor considers a word when moving or deleting by word

 history-beginning-search-backward-end, etc.

 alternative ways of searching the shell history

 replace-string, replace-pattern

 functions for replacing strings or patterns globally in the command line

 edit-command-line

 edit the command line with an external editor.

 See the section `ZLE Functions' in zshcontrib(1) for descriptions of these.

OPTIONS

 The shell has a large number of options for changing its behaviour. These cover all as?

 pects of the shell; browsing the full documentation is the only good way to become ac?

 quainted with the many possibilities. See zshoptions(1).

PATTERN MATCHING

 The shell has a rich set of patterns which are available for file matching (described in

 the documentation as `filename generation' and also known for historical reasons as `glob?

 bing') and for use when programming. These are described in the section `Filename Genera?

 tion' in zshexpn(1).

 Of particular interest are the following patterns that are not commonly supported by other

 systems of pattern matching:

 ** for matching over multiple directories

 | for matching either of two alternatives

 ~, ^ the ability to exclude patterns from matching when the EXTENDED_GLOB option is set

 (...) glob qualifiers, included in parentheses at the end of the pattern, which select

 files by type (such as directories) or attribute (such as size).

GENERAL COMMENTS ON SYNTAX

 Although the syntax of zsh is in ways similar to the Korn shell, and therefore more re?

 motely to the original UNIX shell, the Bourne shell, its default behaviour does not en?

 tirely correspond to those shells. General shell syntax is introduced in the section

 `Shell Grammar' in zshmisc(1). Page 3/4

 One commonly encountered difference is that variables substituted onto the command line

 are not split into words. See the description of the shell option SH_WORD_SPLIT in the

 section `Parameter Expansion' in zshexpn(1). In zsh, you can either explicitly request

 the splitting (e.g. ${=foo}) or use an array when you want a variable to expand to more

 than one word. See the section `Array Parameters' in zshparam(1).

PROGRAMMING

 The most convenient way of adding enhancements to the shell is typically by writing a

 shell function and arranging for it to be autoloaded. Functions are described in the sec?

 tion `Functions' in zshmisc(1). Users changing from the C shell and its relatives should

 notice that aliases are less used in zsh as they don't perform argument substitution, only

 simple text replacement.

 A few general functions, other than those for the line editor described above, are pro?

 vided with the shell and are described in zshcontrib(1). Features include:

 promptinit

 a prompt theme system for changing prompts easily, see the section `Prompt Themes'

 zsh-mime-setup

 a MIME-handling system which dispatches commands according to the suffix of a file

 as done by graphical file managers

 zcalc a calculator

 zargs a version of xargs that makes the find command redundant

 zmv a command for renaming files by means of shell patterns.

zsh 5.8.1 February 12, 2022 ZSHROADMAP(1)

Page 4/4

