
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshparam.1'

$ man zshparam.1

ZSHPARAM(1) General Commands Manual ZSHPARAM(1)

NAME

 zshparam - zsh parameters

DESCRIPTION

 A parameter has a name, a value, and a number of attributes. A name may be any sequence

 of alphanumeric characters and underscores, or the single characters `*', `@', `#', `?',

 `-', `$', or `!'. A parameter whose name begins with an alphanumeric or underscore is

 also referred to as a variable.

 The attributes of a parameter determine the type of its value, often referred to as the

 parameter type or variable type, and also control other processing that may be applied to

 the value when it is referenced. The value type may be a scalar (a string, an integer, or

 a floating point number), an array (indexed numerically), or an associative array (an un?

 ordered set of name-value pairs, indexed by name, also referred to as a hash).

 Named scalar parameters may have the exported, -x, attribute, to copy them into the

 process environment, which is then passed from the shell to any new processes that it

 starts. Exported parameters are called environment variables. The shell also imports en?

 vironment variables at startup time and automatically marks the corresponding parameters

 as exported. Some environment variables are not imported for reasons of security or be?

 cause they would interfere with the correct operation of other shell features.

 Parameters may also be special, that is, they have a predetermined meaning to the shell.

 Special parameters cannot have their type changed or their readonly attribute turned off,

 and if a special parameter is unset, then later recreated, the special properties will be

 retained. Page 1/34

 To declare the type of a parameter, or to assign a string or numeric value to a scalar pa?

 rameter, use the typeset builtin.

 The value of a scalar parameter may also be assigned by writing:

 name=value

 In scalar assignment, value is expanded as a single string, in which the elements of ar?

 rays are joined together; filename expansion is not performed unless the option GLOB_AS?

 SIGN is set.

 When the integer attribute, -i, or a floating point attribute, -E or -F, is set for name,

 the value is subject to arithmetic evaluation. Furthermore, by replacing `=' with `+=', a

 parameter can be incremented or appended to. See the section `Array Parameters' and

 Arithmetic Evaluation (in zshmisc(1)) for additional forms of assignment.

 Note that assignment may implicitly change the attributes of a parameter. For example,

 assigning a number to a variable in arithmetic evaluation may change its type to integer

 or float, and with GLOB_ASSIGN assigning a pattern to a variable may change its type to an

 array.

 To reference the value of a parameter, write `$name' or `${name}'. See Parameter Expan?

 sion in zshexpn(1) for complete details. That section also explains the effect of the

 difference between scalar and array assignment on parameter expansion.

ARRAY PARAMETERS

 To assign an array value, write one of:

 set -A name value ...

 name=(value ...)

 name=([key]=value ...)

 If no parameter name exists, an ordinary array parameter is created. If the parameter

 name exists and is a scalar, it is replaced by a new array.

 In the third form, key is an expression that will be evaluated in arithmetic context (in

 its simplest form, an integer) that gives the index of the element to be assigned with

 value. In this form any elements not explicitly mentioned that come before the largest

 index to which a value is assigned are assigned an empty string. The indices may be in

 any order. Note that this syntax is strict: [and]= must not be quoted, and key may not

 consist of the unquoted string]=, but is otherwise treated as a simple string. The en?

 hanced forms of subscript expression that may be used when directly subscripting a vari?

 able name, described in the section Array Subscripts below, are not available. Page 2/34

 The syntaxes with and without the explicit key may be mixed. An implicit key is deduced

 by incrementing the index from the previously assigned element. Note that it is not

 treated as an error if latter assignments in this form overwrite earlier assignments.

 For example, assuming the option KSH_ARRAYS is not set, the following:

 array=(one [3]=three four)

 causes the array variable array to contain four elements one, an empty string, three and

 four, in that order.

 In the forms where only value is specified, full command line expansion is performed.

 In the [key]=value form, both key and value undergo all forms of expansion allowed for

 single word shell expansions (this does not include filename generation); these are as

 performed by the parameter expansion flag (e) as described in zshexpn(1). Nested paren?

 theses may surround value and are included as part of the value, which is joined into a

 plain string; this differs from ksh which allows the values themselves to be arrays. A

 future version of zsh may support that. To cause the brackets to be interpreted as a

 character class for filename generation, and therefore to treat the resulting list of

 files as a set of values, quote the equal sign using any form of quoting. Example:

 name=([a-z]'='*)

 To append to an array without changing the existing values, use one of the following:

 name+=(value ...)

 name+=([key]=value ...)

 In the second form key may specify an existing index as well as an index off the end of

 the old array; any existing value is overwritten by value. Also, it is possible to use

 [key]+=value to append to the existing value at that index.

 Within the parentheses on the right hand side of either form of the assignment, newlines

 and semicolons are treated the same as white space, separating individual values. Any

 consecutive sequence of such characters has the same effect.

 Ordinary array parameters may also be explicitly declared with:

 typeset -a name

 Associative arrays must be declared before assignment, by using:

 typeset -A name

 When name refers to an associative array, the list in an assignment is interpreted as al?

 ternating keys and values:

 set -A name key value ... Page 3/34

 name=(key value ...)

 name=([key]=value ...)

 Note that only one of the two syntaxes above may be used in any given assignment; the

 forms may not be mixed. This is unlike the case of numerically indexed arrays.

 Every key must have a value in this case. Note that this assigns to the entire array,

 deleting any elements that do not appear in the list. The append syntax may also be used

 with an associative array:

 name+=(key value ...)

 name+=([key]=value ...)

 This adds a new key/value pair if the key is not already present, and replaces the value

 for the existing key if it is. In the second form it is also possible to use [key]+=value

 to append to the existing value at that key. Expansion is performed identically to the

 corresponding forms for normal arrays, as described above.

 To create an empty array (including associative arrays), use one of:

 set -A name

 name=()

 Array Subscripts

 Individual elements of an array may be selected using a subscript. A subscript of the

 form `[exp]' selects the single element exp, where exp is an arithmetic expression which

 will be subject to arithmetic expansion as if it were surrounded by `$((...))'. The ele?

 ments are numbered beginning with 1, unless the KSH_ARRAYS option is set in which case

 they are numbered from zero.

 Subscripts may be used inside braces used to delimit a parameter name, thus `${foo[2]}' is

 equivalent to `$foo[2]'. If the KSH_ARRAYS option is set, the braced form is the only one

 that works, as bracketed expressions otherwise are not treated as subscripts.

 If the KSH_ARRAYS option is not set, then by default accesses to an array element with a

 subscript that evaluates to zero return an empty string, while an attempt to write such an

 element is treated as an error. For backward compatibility the KSH_ZERO_SUBSCRIPT option

 can be set to cause subscript values 0 and 1 to be equivalent; see the description of the

 option in zshoptions(1).

 The same subscripting syntax is used for associative arrays, except that no arithmetic ex?

 pansion is applied to exp. However, the parsing rules for arithmetic expressions still

 apply, which affects the way that certain special characters must be protected from inter? Page 4/34

 pretation. See Subscript Parsing below for details.

 A subscript of the form `[*]' or `[@]' evaluates to all elements of an array; there is no

 difference between the two except when they appear within double quotes. `"$foo[*]"'

 evaluates to `"$foo[1] $foo[2] ..."', whereas `"$foo[@]"' evaluates to `"$foo[1]"

 "$foo[2]" ...'. For associative arrays, `[*]' or `[@]' evaluate to all the values, in no

 particular order. Note that this does not substitute the keys; see the documentation for

 the `k' flag under Parameter Expansion Flags in zshexpn(1) for complete details. When an

 array parameter is referenced as `$name' (with no subscript) it evaluates to `$name[*]',

 unless the KSH_ARRAYS option is set in which case it evaluates to `${name[0]}' (for an as?

 sociative array, this means the value of the key `0', which may not exist even if there

 are values for other keys).

 A subscript of the form `[exp1,exp2]' selects all elements in the range exp1 to exp2, in?

 clusive. (Associative arrays are unordered, and so do not support ranges.) If one of the

 subscripts evaluates to a negative number, say -n, then the nth element from the end of

 the array is used. Thus `$foo[-3]' is the third element from the end of the array foo,

 and `$foo[1,-1]' is the same as `$foo[*]'.

 Subscripting may also be performed on non-array values, in which case the subscripts spec?

 ify a substring to be extracted. For example, if FOO is set to `foobar', then `echo

 $FOO[2,5]' prints `ooba'. Note that some forms of subscripting described below perform

 pattern matching, and in that case the substring extends from the start of the match of

 the first subscript to the end of the match of the second subscript. For example,

 string="abcdefghijklm"

 print ${string[(r)d?,(r)h?]}

 prints `defghi'. This is an obvious generalisation of the rule for single-character

 matches. For a single subscript, only a single character is referenced (not the range of

 characters covered by the match).

 Note that in substring operations the second subscript is handled differently by the r and

 R subscript flags: the former takes the shortest match as the length and the latter the

 longest match. Hence in the former case a * at the end is redundant while in the latter

 case it matches the whole remainder of the string. This does not affect the result of the

 single subscript case as here the length of the match is irrelevant.

 Array Element Assignment

 A subscript may be used on the left side of an assignment like so: Page 5/34

 name[exp]=value

 In this form of assignment the element or range specified by exp is replaced by the ex?

 pression on the right side. An array (but not an associative array) may be created by as?

 signment to a range or element. Arrays do not nest, so assigning a parenthesized list of

 values to an element or range changes the number of elements in the array, shifting the

 other elements to accommodate the new values. (This is not supported for associative ar?

 rays.)

 This syntax also works as an argument to the typeset command:

 typeset "name[exp]"=value

 The value may not be a parenthesized list in this case; only single-element assignments

 may be made with typeset. Note that quotes are necessary in this case to prevent the

 brackets from being interpreted as filename generation operators. The noglob precommand

 modifier could be used instead.

 To delete an element of an ordinary array, assign `()' to that element. To delete an ele?

 ment of an associative array, use the unset command:

 unset "name[exp]"

 Subscript Flags

 If the opening bracket, or the comma in a range, in any subscript expression is directly

 followed by an opening parenthesis, the string up to the matching closing one is consid?

 ered to be a list of flags, as in `name[(flags)exp]'.

 The flags s, n and b take an argument; the delimiter is shown below as `:', but any char?

 acter, or the matching pairs `(...)', `{...}', `[...]', or `<...>', may be used, but note

 that `<...>' can only be used if the subscript is inside a double quoted expression or a

 parameter substitution enclosed in braces as otherwise the expression is interpreted as a

 redirection.

 The flags currently understood are:

 w If the parameter subscripted is a scalar then this flag makes subscripting work on

 words instead of characters. The default word separator is whitespace. When com?

 bined with the i or I flag, the effect is to produce the index of the first charac?

 ter of the first/last word which matches the given pattern; note that a failed

 match in this case always yields 0.

 s:string:

 This gives the string that separates words (for use with the w flag). The delim? Page 6/34

 iter character : is arbitrary; see above.

 p Recognize the same escape sequences as the print builtin in the string argument of

 a subsequent `s' flag.

 f If the parameter subscripted is a scalar then this flag makes subscripting work on

 lines instead of characters, i.e. with elements separated by newlines. This is a

 shorthand for `pws:\n:'.

 r Reverse subscripting: if this flag is given, the exp is taken as a pattern and the

 result is the first matching array element, substring or word (if the parameter is

 an array, if it is a scalar, or if it is a scalar and the `w' flag is given, re?

 spectively). The subscript used is the number of the matching element, so that

 pairs of subscripts such as `$foo[(r)??,3]' and `$foo[(r)??,(r)f*]' are possible if

 the parameter is not an associative array. If the parameter is an associative ar?

 ray, only the value part of each pair is compared to the pattern, and the result is

 that value.

 If a search through an ordinary array failed, the search sets the subscript to one

 past the end of the array, and hence ${array[(r)pattern]} will substitute the empty

 string. Thus the success of a search can be tested by using the (i) flag, for ex?

 ample (assuming the option KSH_ARRAYS is not in effect):

 [[${array[(i)pattern]} -le ${#array}]]

 If KSH_ARRAYS is in effect, the -le should be replaced by -lt.

 R Like `r', but gives the last match. For associative arrays, gives all possible

 matches. May be used for assigning to ordinary array elements, but not for assign?

 ing to associative arrays. On failure, for normal arrays this has the effect of

 returning the element corresponding to subscript 0; this is empty unless one of the

 options KSH_ARRAYS or KSH_ZERO_SUBSCRIPT is in effect.

 Note that in subscripts with both `r' and `R' pattern characters are active even if

 they were substituted for a parameter (regardless of the setting of GLOB_SUBST

 which controls this feature in normal pattern matching). The flag `e' can be added

 to inhibit pattern matching. As this flag does not inhibit other forms of substi?

 tution, care is still required; using a parameter to hold the key has the desired

 effect:

 key2='original key'

 print ${array[(Re)$key2]} Page 7/34

 i Like `r', but gives the index of the match instead; this may not be combined with a

 second argument. On the left side of an assignment, behaves like `r'. For asso?

 ciative arrays, the key part of each pair is compared to the pattern, and the first

 matching key found is the result. On failure substitutes the length of the array

 plus one, as discussed under the description of `r', or the empty string for an as?

 sociative array.

 I Like `i', but gives the index of the last match, or all possible matching keys in

 an associative array. On failure substitutes 0, or the empty string for an asso?

 ciative array. This flag is best when testing for values or keys that do not ex?

 ist.

 k If used in a subscript on an associative array, this flag causes the keys to be in?

 terpreted as patterns, and returns the value for the first key found where exp is

 matched by the key. Note this could be any such key as no ordering of associative

 arrays is defined. This flag does not work on the left side of an assignment to an

 associative array element. If used on another type of parameter, this behaves like

 `r'.

 K On an associative array this is like `k' but returns all values where exp is

 matched by the keys. On other types of parameters this has the same effect as `R'.

 n:expr:

 If combined with `r', `R', `i' or `I', makes them give the nth or nth last match

 (if expr evaluates to n). This flag is ignored when the array is associative. The

 delimiter character : is arbitrary; see above.

 b:expr:

 If combined with `r', `R', `i' or `I', makes them begin at the nth or nth last ele?

 ment, word, or character (if expr evaluates to n). This flag is ignored when the

 array is associative. The delimiter character : is arbitrary; see above.

 e This flag causes any pattern matching that would be performed on the subscript to

 use plain string matching instead. Hence `${array[(re)*]}' matches only the array

 element whose value is *. Note that other forms of substitution such as parameter

 substitution are not inhibited.

 This flag can also be used to force * or @ to be interpreted as a single key rather

 than as a reference to all values. It may be used for either purpose on the left

 side of an assignment. Page 8/34

 See Parameter Expansion Flags (zshexpn(1)) for additional ways to manipulate the results

 of array subscripting.

 Subscript Parsing

 This discussion applies mainly to associative array key strings and to patterns used for

 reverse subscripting (the `r', `R', `i', etc. flags), but it may also affect parameter

 substitutions that appear as part of an arithmetic expression in an ordinary subscript.

 To avoid subscript parsing limitations in assignments to associative array elements, use

 the append syntax:

 aa+=('key with "*strange*" characters' 'value string')

 The basic rule to remember when writing a subscript expression is that all text between

 the opening `[' and the closing `]' is interpreted as if it were in double quotes (see

 zshmisc(1)). However, unlike double quotes which normally cannot nest, subscript expres?

 sions may appear inside double-quoted strings or inside other subscript expressions (or

 both!), so the rules have two important differences.

 The first difference is that brackets (`[' and `]') must appear as balanced pairs in a

 subscript expression unless they are preceded by a backslash (`\'). Therefore, within a

 subscript expression (and unlike true double-quoting) the sequence `\[' becomes `[', and

 similarly `\]' becomes `]'. This applies even in cases where a backslash is not normally

 required; for example, the pattern `[^[]' (to match any character other than an open

 bracket) should be written `[^\[]' in a reverse-subscript pattern. However, note that

 `\[^\[\]' and even `\[^[]' mean the same thing, because backslashes are always stripped

 when they appear before brackets!

 The same rule applies to parentheses (`(' and `)') and braces (`{' and `}'): they must ap?

 pear either in balanced pairs or preceded by a backslash, and backslashes that protect

 parentheses or braces are removed during parsing. This is because parameter expansions

 may be surrounded by balanced braces, and subscript flags are introduced by balanced

 parentheses.

 The second difference is that a double-quote (`"') may appear as part of a subscript ex?

 pression without being preceded by a backslash, and therefore that the two characters `\"'

 remain as two characters in the subscript (in true double-quoting, `\"' becomes `"').

 However, because of the standard shell quoting rules, any double-quotes that appear must

 occur in balanced pairs unless preceded by a backslash. This makes it more difficult to

 write a subscript expression that contains an odd number of double-quote characters, but Page 9/34

 the reason for this difference is so that when a subscript expression appears inside true

 double-quotes, one can still write `\"' (rather than `\\\"') for `"'.

 To use an odd number of double quotes as a key in an assignment, use the typeset builtin

 and an enclosing pair of double quotes; to refer to the value of that key, again use dou?

 ble quotes:

 typeset -A aa

 typeset "aa[one\"two\"three\"quotes]"=QQQ

 print "$aa[one\"two\"three\"quotes]"

 It is important to note that the quoting rules do not change when a parameter expansion

 with a subscript is nested inside another subscript expression. That is, it is not neces?

 sary to use additional backslashes within the inner subscript expression; they are removed

 only once, from the innermost subscript outwards. Parameters are also expanded from the

 innermost subscript first, as each expansion is encountered left to right in the outer ex?

 pression.

 A further complication arises from a way in which subscript parsing is not different from

 double quote parsing. As in true double-quoting, the sequences `*', and `\@' remain as

 two characters when they appear in a subscript expression. To use a literal `*' or `@' as

 an associative array key, the `e' flag must be used:

 typeset -A aa

 aa[(e)*]=star

 print $aa[(e)*]

 A last detail must be considered when reverse subscripting is performed. Parameters ap?

 pearing in the subscript expression are first expanded and then the complete expression is

 interpreted as a pattern. This has two effects: first, parameters behave as if GLOB_SUBST

 were on (and it cannot be turned off); second, backslashes are interpreted twice, once

 when parsing the array subscript and again when parsing the pattern. In a reverse sub?

 script, it's necessary to use four backslashes to cause a single backslash to match liter?

 ally in the pattern. For complex patterns, it is often easiest to assign the desired pat?

 tern to a parameter and then refer to that parameter in the subscript, because then the

 backslashes, brackets, parentheses, etc., are seen only when the complete expression is

 converted to a pattern. To match the value of a parameter literally in a reverse sub?

 script, rather than as a pattern, use `${(q)name}' (see zshexpn(1)) to quote the expanded

 value. Page 10/34

 Note that the `k' and `K' flags are reverse subscripting for an ordinary array, but are

 not reverse subscripting for an associative array! (For an associative array, the keys in

 the array itself are interpreted as patterns by those flags; the subscript is a plain

 string in that case.)

 One final note, not directly related to subscripting: the numeric names of positional pa?

 rameters (described below) are parsed specially, so for example `$2foo' is equivalent to

 `${2}foo'. Therefore, to use subscript syntax to extract a substring from a positional

 parameter, the expansion must be surrounded by braces; for example, `${2[3,5]}' evaluates

 to the third through fifth characters of the second positional parameter, but `$2[3,5]' is

 the entire second parameter concatenated with the filename generation pattern `[3,5]'.

POSITIONAL PARAMETERS

 The positional parameters provide access to the command-line arguments of a shell func?

 tion, shell script, or the shell itself; see the section `Invocation', and also the sec?

 tion `Functions'. The parameter n, where n is a number, is the nth positional parameter.

 The parameter `$0' is a special case, see the section `Parameters Set By The Shell'.

 The parameters *, @ and argv are arrays containing all the positional parameters; thus

 `$argv[n]', etc., is equivalent to simply `$n'. Note that the options KSH_ARRAYS or

 KSH_ZERO_SUBSCRIPT apply to these arrays as well, so with either of those options set,

 `${argv[0]}' is equivalent to `$1' and so on.

 Positional parameters may be changed after the shell or function starts by using the set

 builtin, by assigning to the argv array, or by direct assignment of the form `n=value'

 where n is the number of the positional parameter to be changed. This also creates (with

 empty values) any of the positions from 1 to n that do not already have values. Note

 that, because the positional parameters form an array, an array assignment of the form

 `n=(value ...)' is allowed, and has the effect of shifting all the values at positions

 greater than n by as many positions as necessary to accommodate the new values.

LOCAL PARAMETERS

 Shell function executions delimit scopes for shell parameters. (Parameters are dynami?

 cally scoped.) The typeset builtin, and its alternative forms declare, integer, local and

 readonly (but not export), can be used to declare a parameter as being local to the inner?

 most scope.

 When a parameter is read or assigned to, the innermost existing parameter of that name is

 used. (That is, the local parameter hides any less-local parameter.) However, assigning Page 11/34

 to a non-existent parameter, or declaring a new parameter with export, causes it to be

 created in the outermost scope.

 Local parameters disappear when their scope ends. unset can be used to delete a parameter

 while it is still in scope; any outer parameter of the same name remains hidden.

 Special parameters may also be made local; they retain their special attributes unless ei?

 ther the existing or the newly-created parameter has the -h (hide) attribute. This may

 have unexpected effects: there is no default value, so if there is no assignment at the

 point the variable is made local, it will be set to an empty value (or zero in the case of

 integers). The following:

 typeset PATH=/new/directory:$PATH

 is valid for temporarily allowing the shell or programmes called from it to find the pro?

 grams in /new/directory inside a function.

 Note that the restriction in older versions of zsh that local parameters were never ex?

 ported has been removed.

PARAMETERS SET BY THE SHELL

 In the parameter lists that follow, the mark `<S>' indicates that the parameter is spe?

 cial. `<Z>' indicates that the parameter does not exist when the shell initializes in sh

 or ksh emulation mode.

 The following parameters are automatically set by the shell:

 ! <S> The process ID of the last command started in the background with &, put into the

 background with the bg builtin, or spawned with coproc.

 # <S> The number of positional parameters in decimal. Note that some confusion may occur

 with the syntax $#param which substitutes the length of param. Use ${#} to resolve

 ambiguities. In particular, the sequence `$#-...' in an arithmetic expression is

 interpreted as the length of the parameter -, q.v.

 ARGC <S> <Z>

 Same as #.

 $ <S> The process ID of this shell. Note that this indicates the original shell started

 by invoking zsh; all processes forked from the shells without executing a new pro?

 gram, such as subshells started by (...), substitute the same value.

 - <S> Flags supplied to the shell on invocation or by the set or setopt commands.

 * <S> An array containing the positional parameters.

 argv <S> <Z> Page 12/34

 Same as *. Assigning to argv changes the local positional parameters, but argv is

 not itself a local parameter. Deleting argv with unset in any function deletes it

 everywhere, although only the innermost positional parameter array is deleted (so *

 and @ in other scopes are not affected).

 @ <S> Same as argv[@], even when argv is not set.

 ? <S> The exit status returned by the last command.

 0 <S> The name used to invoke the current shell, or as set by the -c command line option

 upon invocation. If the FUNCTION_ARGZERO option is set, $0 is set upon entry to a

 shell function to the name of the function, and upon entry to a sourced script to

 the name of the script, and reset to its previous value when the function or script

 returns.

 status <S> <Z>

 Same as ?.

 pipestatus <S> <Z>

 An array containing the exit statuses returned by all commands in the last pipe?

 line.

 _ <S> The last argument of the previous command. Also, this parameter is set in the en?

 vironment of every command executed to the full pathname of the command.

 CPUTYPE

 The machine type (microprocessor class or machine model), as determined at run

 time.

 EGID <S>

 The effective group ID of the shell process. If you have sufficient privileges,

 you may change the effective group ID of the shell process by assigning to this pa?

 rameter. Also (assuming sufficient privileges), you may start a single command

 with a different effective group ID by `(EGID=gid; command)'

 If this is made local, it is not implicitly set to 0, but may be explicitly set lo?

 cally.

 EUID <S>

 The effective user ID of the shell process. If you have sufficient privileges, you

 may change the effective user ID of the shell process by assigning to this parame?

 ter. Also (assuming sufficient privileges), you may start a single command with a

 different effective user ID by `(EUID=uid; command)' Page 13/34

 If this is made local, it is not implicitly set to 0, but may be explicitly set lo?

 cally.

 ERRNO <S>

 The value of errno (see errno(3)) as set by the most recently failed system call.

 This value is system dependent and is intended for debugging purposes. It is also

 useful with the zsh/system module which allows the number to be turned into a name

 or message.

 FUNCNEST <S>

 Integer. If greater than or equal to zero, the maximum nesting depth of shell

 functions. When it is exceeded, an error is raised at the point where a function

 is called. The default value is determined when the shell is configured, but is

 typically 500. Increasing the value increases the danger of a runaway function re?

 cursion causing the shell to crash. Setting a negative value turns off the check.

 GID <S>

 The real group ID of the shell process. If you have sufficient privileges, you may

 change the group ID of the shell process by assigning to this parameter. Also (as?

 suming sufficient privileges), you may start a single command under a different

 group ID by `(GID=gid; command)'

 If this is made local, it is not implicitly set to 0, but may be explicitly set lo?

 cally.

 HISTCMD

 The current history event number in an interactive shell, in other words the event

 number for the command that caused $HISTCMD to be read. If the current history

 event modifies the history, HISTCMD changes to the new maximum history event num?

 ber.

 HOST The current hostname.

 LINENO <S>

 The line number of the current line within the current script, sourced file, or

 shell function being executed, whichever was started most recently. Note that in

 the case of shell functions the line number refers to the function as it appeared

 in the original definition, not necessarily as displayed by the functions builtin.

 LOGNAME

 If the corresponding variable is not set in the environment of the shell, it is Page 14/34

 initialized to the login name corresponding to the current login session. This pa?

 rameter is exported by default but this can be disabled using the typeset builtin.

 The value is set to the string returned by the getlogin(3) system call if that is

 available.

 MACHTYPE

 The machine type (microprocessor class or machine model), as determined at compile

 time.

 OLDPWD The previous working directory. This is set when the shell initializes and when?

 ever the directory changes.

 OPTARG <S>

 The value of the last option argument processed by the getopts command.

 OPTIND <S>

 The index of the last option argument processed by the getopts command.

 OSTYPE The operating system, as determined at compile time.

 PPID <S>

 The process ID of the parent of the shell. As for $$, the value indicates the par?

 ent of the original shell and does not change in subshells.

 PWD The present working directory. This is set when the shell initializes and whenever

 the directory changes.

 RANDOM <S>

 A pseudo-random integer from 0 to 32767, newly generated each time this parameter

 is referenced. The random number generator can be seeded by assigning a numeric

 value to RANDOM.

 The values of RANDOM form an intentionally-repeatable pseudo-random sequence; sub?

 shells that reference RANDOM will result in identical pseudo-random values unless

 the value of RANDOM is referenced or seeded in the parent shell in between subshell

 invocations.

 SECONDS <S>

 The number of seconds since shell invocation. If this parameter is assigned a

 value, then the value returned upon reference will be the value that was assigned

 plus the number of seconds since the assignment.

 Unlike other special parameters, the type of the SECONDS parameter can be changed

 using the typeset command. Only integer and one of the floating point types are Page 15/34

 allowed. For example, `typeset -F SECONDS' causes the value to be reported as a

 floating point number. The value is available to microsecond accuracy, although

 the shell may show more or fewer digits depending on the use of typeset. See the

 documentation for the builtin typeset in zshbuiltins(1) for more details.

 SHLVL <S>

 Incremented by one each time a new shell is started.

 signals

 An array containing the names of the signals. Note that with the standard zsh num?

 bering of array indices, where the first element has index 1, the signals are off?

 set by 1 from the signal number used by the operating system. For example, on typ?

 ical Unix-like systems HUP is signal number 1, but is referred to as $signals[2].

 This is because of EXIT at position 1 in the array, which is used internally by zsh

 but is not known to the operating system.

 TRY_BLOCK_ERROR <S>

 In an always block, indicates whether the preceding list of code caused an error.

 The value is 1 to indicate an error, 0 otherwise. It may be reset, clearing the

 error condition. See Complex Commands in zshmisc(1)

 TRY_BLOCK_INTERRUPT <S>

 This variable works in a similar way to TRY_BLOCK_ERROR, but represents the status

 of an interrupt from the signal SIGINT, which typically comes from the keyboard

 when the user types ^C. If set to 0, any such interrupt will be reset; otherwise,

 the interrupt is propagated after the always block.

 Note that it is possible that an interrupt arrives during the execution of the al?

 ways block; this interrupt is also propagated.

 TTY The name of the tty associated with the shell, if any.

 TTYIDLE <S>

 The idle time of the tty associated with the shell in seconds or -1 if there is no

 such tty.

 UID <S>

 The real user ID of the shell process. If you have sufficient privileges, you may

 change the user ID of the shell by assigning to this parameter. Also (assuming

 sufficient privileges), you may start a single command under a different user ID by

 `(UID=uid; command)' Page 16/34

 If this is made local, it is not implicitly set to 0, but may be explicitly set lo?

 cally.

 USERNAME <S>

 The username corresponding to the real user ID of the shell process. If you have

 sufficient privileges, you may change the username (and also the user ID and group

 ID) of the shell by assigning to this parameter. Also (assuming sufficient privi?

 leges), you may start a single command under a different username (and user ID and

 group ID) by `(USERNAME=username; command)'

 VENDOR The vendor, as determined at compile time.

 zsh_eval_context <S> <Z> (ZSH_EVAL_CONTEXT <S>)

 An array (colon-separated list) indicating the context of shell code that is being

 run. Each time a piece of shell code that is stored within the shell is executed a

 string is temporarily appended to the array to indicate the type of operation that

 is being performed. Read in order the array gives an indication of the stack of

 operations being performed with the most immediate context last.

 Note that the variable does not give information on syntactic context such as pipe?

 lines or subshells. Use $ZSH_SUBSHELL to detect subshells.

 The context is one of the following:

 cmdarg Code specified by the -c option to the command line that invoked the shell.

 cmdsubst

 Command substitution using the `...` or $(...) construct.

 equalsubst

 File substitution using the =(...) construct.

 eval Code executed by the eval builtin.

 evalautofunc

 Code executed with the KSH_AUTOLOAD mechanism in order to define an au?

 toloaded function.

 fc Code from the shell history executed by the -e option to the fc builtin.

 file Lines of code being read directly from a file, for example by the source

 builtin.

 filecode

 Lines of code being read from a .zwc file instead of directly from the

 source file. Page 17/34

 globqual

 Code executed by the e or + glob qualifier.

 globsort

 Code executed to order files by the o glob qualifier.

 insubst

 File substitution using the <(...) construct.

 loadautofunc

 Code read directly from a file to define an autoloaded function.

 outsubst

 File substitution using the >(...) construct.

 sched Code executed by the sched builtin.

 shfunc A shell function.

 stty Code passed to stty by the STTY environment variable. Normally this is

 passed directly to the system's stty command, so this value is unlikely to

 be seen in practice.

 style Code executed as part of a style retrieved by the zstyle builtin from the

 zsh/zutil module.

 toplevel

 The highest execution level of a script or interactive shell.

 trap Code executed as a trap defined by the trap builtin. Traps defined as func?

 tions have the context shfunc. As traps are asynchronous they may have a

 different hierarchy from other code.

 zpty Code executed by the zpty builtin from the zsh/zpty module.

 zregexparse-guard

 Code executed as a guard by the zregexparse command from the zsh/zutil mod?

 ule.

 zregexparse-action

 Code executed as an action by the zregexparse command from the zsh/zutil

 module.

 ZSH_ARGZERO

 If zsh was invoked to run a script, this is the name of the script. Otherwise, it

 is the name used to invoke the current shell. This is the same as the value of $0

 when the POSIX_ARGZERO option is set, but is always available. Page 18/34

 ZSH_EXECUTION_STRING

 If the shell was started with the option -c, this contains the argument passed to

 the option. Otherwise it is not set.

 ZSH_NAME

 Expands to the basename of the command used to invoke this instance of zsh.

 ZSH_PATCHLEVEL

 The output of `git describe --tags --long' for the zsh repository used to build the

 shell. This is most useful in order to keep track of versions of the shell during

 development between releases; hence most users should not use it and should instead

 rely on $ZSH_VERSION.

 zsh_scheduled_events

 See the section `The zsh/sched Module' in zshmodules(1).

 ZSH_SCRIPT

 If zsh was invoked to run a script, this is the name of the script, otherwise it is

 unset.

 ZSH_SUBSHELL

 Readonly integer. Initially zero, incremented each time the shell forks to create

 a subshell for executing code. Hence `(print $ZSH_SUBSHELL)' and `print $(print

 $ZSH_SUBSHELL)' output 1, while `((print $ZSH_SUBSHELL))' outputs 2.

 ZSH_VERSION

 The version number of the release of zsh.

PARAMETERS USED BY THE SHELL

 The following parameters are used by the shell. Again, `<S>' indicates that the parameter

 is special and `<Z>' indicates that the parameter does not exist when the shell initial?

 izes in sh or ksh emulation mode.

 In cases where there are two parameters with an upper- and lowercase form of the same

 name, such as path and PATH, the lowercase form is an array and the uppercase form is a

 scalar with the elements of the array joined together by colons. These are similar to

 tied parameters created via `typeset -T'. The normal use for the colon-separated form is

 for exporting to the environment, while the array form is easier to manipulate within the

 shell. Note that unsetting either of the pair will unset the other; they retain their

 special properties when recreated, and recreating one of the pair will recreate the other.

 ARGV0 If exported, its value is used as the argv[0] of external commands. Usually used Page 19/34

 in constructs like `ARGV0=emacs nethack'.

 BAUD The rate in bits per second at which data reaches the terminal. The line editor

 will use this value in order to compensate for a slow terminal by delaying updates

 to the display until necessary. If the parameter is unset or the value is zero the

 compensation mechanism is turned off. The parameter is not set by default.

 This parameter may be profitably set in some circumstances, e.g. for slow modems

 dialing into a communications server, or on a slow wide area network. It should be

 set to the baud rate of the slowest part of the link for best performance.

 cdpath <S> <Z> (CDPATH <S>)

 An array (colon-separated list) of directories specifying the search path for the

 cd command.

 COLUMNS <S>

 The number of columns for this terminal session. Used for printing select lists

 and for the line editor.

 CORRECT_IGNORE

 If set, is treated as a pattern during spelling correction. Any potential correc?

 tion that matches the pattern is ignored. For example, if the value is `_*' then

 completion functions (which, by convention, have names beginning with `_') will

 never be offered as spelling corrections. The pattern does not apply to the cor?

 rection of file names, as applied by the CORRECT_ALL option (so with the example

 just given files beginning with `_' in the current directory would still be com?

 pleted).

 CORRECT_IGNORE_FILE

 If set, is treated as a pattern during spelling correction of file names. Any file

 name that matches the pattern is never offered as a correction. For example, if

 the value is `.*' then dot file names will never be offered as spelling correc?

 tions. This is useful with the CORRECT_ALL option.

 DIRSTACKSIZE

 The maximum size of the directory stack, by default there is no limit. If the

 stack gets larger than this, it will be truncated automatically. This is useful

 with the AUTO_PUSHD option.

 ENV If the ENV environment variable is set when zsh is invoked as sh or ksh, $ENV is

 sourced after the profile scripts. The value of ENV is subjected to parameter ex? Page 20/34

 pansion, command substitution, and arithmetic expansion before being interpreted as

 a pathname. Note that ENV is not used unless the shell is interactive and zsh is

 emulating sh or ksh.

 FCEDIT The default editor for the fc builtin. If FCEDIT is not set, the parameter EDITOR

 is used; if that is not set either, a builtin default, usually vi, is used.

 fignore <S> <Z> (FIGNORE <S>)

 An array (colon separated list) containing the suffixes of files to be ignored dur?

 ing filename completion. However, if completion only generates files with suffixes

 in this list, then these files are completed anyway.

 fpath <S> <Z> (FPATH <S>)

 An array (colon separated list) of directories specifying the search path for func?

 tion definitions. This path is searched when a function with the -u attribute is

 referenced. If an executable file is found, then it is read and executed in the

 current environment.

 histchars <S>

 Three characters used by the shell's history and lexical analysis mechanism. The

 first character signals the start of a history expansion (default `!'). The second

 character signals the start of a quick history substitution (default `^'). The

 third character is the comment character (default `#').

 The characters must be in the ASCII character set; any attempt to set histchars to

 characters with a locale-dependent meaning will be rejected with an error message.

 HISTCHARS <S> <Z>

 Same as histchars. (Deprecated.)

 HISTFILE

 The file to save the history in when an interactive shell exits. If unset, the

 history is not saved.

 HISTORY_IGNORE

 If set, is treated as a pattern at the time history files are written. Any poten?

 tial history entry that matches the pattern is skipped. For example, if the value

 is `fc *' then commands that invoke the interactive history editor are never writ?

 ten to the history file.

 Note that HISTORY_IGNORE defines a single pattern: to specify alternatives use the

 `(first|second|...)' syntax. Page 21/34

 Compare the HIST_NO_STORE option or the zshaddhistory hook, either of which would

 prevent such commands from being added to the interactive history at all. If you

 wish to use HISTORY_IGNORE to stop history being added in the first place, you can

 define the following hook:

 zshaddhistory() {

 emulate -L zsh

 ## uncomment if HISTORY_IGNORE

 ## should use EXTENDED_GLOB syntax

 # setopt extendedglob

 [[$1 != ${~HISTORY_IGNORE}]]

 }

 HISTSIZE <S>

 The maximum number of events stored in the internal history list. If you use the

 HIST_EXPIRE_DUPS_FIRST option, setting this value larger than the SAVEHIST size

 will give you the difference as a cushion for saving duplicated history events.

 If this is made local, it is not implicitly set to 0, but may be explicitly set lo?

 cally.

 HOME <S>

 The default argument for the cd command. This is not set automatically by the

 shell in sh, ksh or csh emulation, but it is typically present in the environment

 anyway, and if it becomes set it has its usual special behaviour.

 IFS <S>

 Internal field separators (by default space, tab, newline and NUL), that are used

 to separate words which result from command or parameter expansion and words read

 by the read builtin. Any characters from the set space, tab and newline that ap?

 pear in the IFS are called IFS white space. One or more IFS white space characters

 or one non-IFS white space character together with any adjacent IFS white space

 character delimit a field. If an IFS white space character appears twice consecu?

 tively in the IFS, this character is treated as if it were not an IFS white space

 character.

 If the parameter is unset, the default is used. Note this has a different effect

 from setting the parameter to an empty string.

 KEYBOARD_HACK Page 22/34

 This variable defines a character to be removed from the end of the command line

 before interpreting it (interactive shells only). It is intended to fix the problem

 with keys placed annoyingly close to return and replaces the SUNKEYBOARDHACK option

 which did this for backquotes only. Should the chosen character be one of single?

 quote, doublequote or backquote, there must also be an odd number of them on the

 command line for the last one to be removed.

 For backward compatibility, if the SUNKEYBOARDHACK option is explicitly set, the

 value of KEYBOARD_HACK reverts to backquote. If the option is explicitly unset,

 this variable is set to empty.

 KEYTIMEOUT

 The time the shell waits, in hundredths of seconds, for another key to be pressed

 when reading bound multi-character sequences.

 LANG <S>

 This variable determines the locale category for any category not specifically se?

 lected via a variable starting with `LC_'.

 LC_ALL <S>

 This variable overrides the value of the `LANG' variable and the value of any of

 the other variables starting with `LC_'.

 LC_COLLATE <S>

 This variable determines the locale category for character collation information

 within ranges in glob brackets and for sorting.

 LC_CTYPE <S>

 This variable determines the locale category for character handling functions. If

 the MULTIBYTE option is in effect this variable or LANG should contain a value that

 reflects the character set in use, even if it is a single-byte character set, un?

 less only the 7-bit subset (ASCII) is used. For example, if the character set is

 ISO-8859-1, a suitable value might be en_US.iso88591 (certain Linux distributions)

 or en_US.ISO8859-1 (MacOS).

 LC_MESSAGES <S>

 This variable determines the language in which messages should be written. Note

 that zsh does not use message catalogs.

 LC_NUMERIC <S>

 This variable affects the decimal point character and thousands separator character Page 23/34

 for the formatted input/output functions and string conversion functions. Note

 that zsh ignores this setting when parsing floating point mathematical expressions.

 LC_TIME <S>

 This variable determines the locale category for date and time formatting in prompt

 escape sequences.

 LINES <S>

 The number of lines for this terminal session. Used for printing select lists and

 for the line editor.

 LISTMAX

 In the line editor, the number of matches to list without asking first. If the

 value is negative, the list will be shown if it spans at most as many lines as

 given by the absolute value. If set to zero, the shell asks only if the top of the

 listing would scroll off the screen.

 LOGCHECK

 The interval in seconds between checks for login/logout activity using the watch

 parameter.

 MAIL If this parameter is set and mailpath is not set, the shell looks for mail in the

 specified file.

 MAILCHECK

 The interval in seconds between checks for new mail.

 mailpath <S> <Z> (MAILPATH <S>)

 An array (colon-separated list) of filenames to check for new mail. Each filename

 can be followed by a `?' and a message that will be printed. The message will un?

 dergo parameter expansion, command substitution and arithmetic expansion with the

 variable $_ defined as the name of the file that has changed. The default message

 is `You have new mail'. If an element is a directory instead of a file the shell

 will recursively check every file in every subdirectory of the element.

 manpath <S> <Z> (MANPATH <S> <Z>)

 An array (colon-separated list) whose value is not used by the shell. The manpath

 array can be useful, however, since setting it also sets MANPATH, and vice versa.

 match

 mbegin

 mend Arrays set by the shell when the b globbing flag is used in pattern matches. See Page 24/34

 the subsection Globbing flags in the documentation for Filename Generation in zsh?

 expn(1).

 MATCH

 MBEGIN

 MEND Set by the shell when the m globbing flag is used in pattern matches. See the sub?

 section Globbing flags in the documentation for Filename Generation in zshexpn(1).

 module_path <S> <Z> (MODULE_PATH <S>)

 An array (colon-separated list) of directories that zmodload searches for dynami?

 cally loadable modules. This is initialized to a standard pathname, usually

 `/usr/local/lib/zsh/$ZSH_VERSION'. (The `/usr/local/lib' part varies from instal?

 lation to installation.) For security reasons, any value set in the environment

 when the shell is started will be ignored.

 These parameters only exist if the installation supports dynamic module loading.

 NULLCMD <S>

 The command name to assume if a redirection is specified with no command. Defaults

 to cat. For sh/ksh behavior, change this to :. For csh-like behavior, unset this

 parameter; the shell will print an error message if null commands are entered.

 path <S> <Z> (PATH <S>)

 An array (colon-separated list) of directories to search for commands. When this

 parameter is set, each directory is scanned and all files found are put in a hash

 table.

 POSTEDIT <S>

 This string is output whenever the line editor exits. It usually contains termcap

 strings to reset the terminal.

 PROMPT <S> <Z>

 PROMPT2 <S> <Z>

 PROMPT3 <S> <Z>

 PROMPT4 <S> <Z>

 Same as PS1, PS2, PS3 and PS4, respectively.

 prompt <S> <Z>

 Same as PS1.

 PROMPT_EOL_MARK

 When the PROMPT_CR and PROMPT_SP options are set, the PROMPT_EOL_MARK parameter canPage 25/34

 be used to customize how the end of partial lines are shown. This parameter under?

 goes prompt expansion, with the PROMPT_PERCENT option set. If not set, the default

 behavior is equivalent to the value `%B%S%#%s%b'.

 PS1 <S>

 The primary prompt string, printed before a command is read. It undergoes a spe?

 cial form of expansion before being displayed; see EXPANSION OF PROMPT SEQUENCES in

 zshmisc(1). The default is `%m%# '.

 PS2 <S>

 The secondary prompt, printed when the shell needs more information to complete a

 command. It is expanded in the same way as PS1. The default is `%_> ', which dis?

 plays any shell constructs or quotation marks which are currently being processed.

 PS3 <S>

 Selection prompt used within a select loop. It is expanded in the same way as PS1.

 The default is `?# '.

 PS4 <S>

 The execution trace prompt. Default is `+%N:%i> ', which displays the name of the

 current shell structure and the line number within it. In sh or ksh emulation, the

 default is `+ '.

 psvar <S> <Z> (PSVAR <S>)

 An array (colon-separated list) whose elements can be used in PROMPT strings. Set?

 ting psvar also sets PSVAR, and vice versa.

 READNULLCMD <S>

 The command name to assume if a single input redirection is specified with no com?

 mand. Defaults to more.

 REPORTMEMORY

 If nonnegative, commands whose maximum resident set size (roughly speaking, main

 memory usage) in kilobytes is greater than this value have timing statistics re?

 ported. The format used to output statistics is the value of the TIMEFMT parame?

 ter, which is the same as for the REPORTTIME variable and the time builtin; note

 that by default this does not output memory usage. Appending " max RSS %M" to the

 value of TIMEFMT causes it to output the value that triggered the report. If RE?

 PORTTIME is also in use, at most a single report is printed for both triggers.

 This feature requires the getrusage() system call, commonly supported by modern Page 26/34

 Unix-like systems.

 REPORTTIME

 If nonnegative, commands whose combined user and system execution times (measured

 in seconds) are greater than this value have timing statistics printed for them.

 Output is suppressed for commands executed within the line editor, including com?

 pletion; commands explicitly marked with the time keyword still cause the summary

 to be printed in this case.

 REPLY This parameter is reserved by convention to pass string values between shell

 scripts and shell builtins in situations where a function call or redirection are

 impossible or undesirable. The read builtin and the select complex command may set

 REPLY, and filename generation both sets and examines its value when evaluating

 certain expressions. Some modules also employ REPLY for similar purposes.

 reply As REPLY, but for array values rather than strings.

 RPROMPT <S>

 RPS1 <S>

 This prompt is displayed on the right-hand side of the screen when the primary

 prompt is being displayed on the left. This does not work if the SINGLE_LINE_ZLE

 option is set. It is expanded in the same way as PS1.

 RPROMPT2 <S>

 RPS2 <S>

 This prompt is displayed on the right-hand side of the screen when the secondary

 prompt is being displayed on the left. This does not work if the SINGLE_LINE_ZLE

 option is set. It is expanded in the same way as PS2.

 SAVEHIST

 The maximum number of history events to save in the history file.

 If this is made local, it is not implicitly set to 0, but may be explicitly set lo?

 cally.

 SPROMPT <S>

 The prompt used for spelling correction. The sequence `%R' expands to the string

 which presumably needs spelling correction, and `%r' expands to the proposed cor?

 rection. All other prompt escapes are also allowed.

 The actions available at the prompt are [nyae]:

 n (`no') (default) Page 27/34

 Discard the correction and run the command.

 y (`yes')

 Make the correction and run the command.

 a (`abort')

 Discard the entire command line without running it.

 e (`edit')

 Resume editing the command line.

 STTY If this parameter is set in a command's environment, the shell runs the stty com?

 mand with the value of this parameter as arguments in order to set up the terminal

 before executing the command. The modes apply only to the command, and are reset

 when it finishes or is suspended. If the command is suspended and continued later

 with the fg or wait builtins it will see the modes specified by STTY, as if it were

 not suspended. This (intentionally) does not apply if the command is continued via

 `kill -CONT'. STTY is ignored if the command is run in the background, or if it is

 in the environment of the shell but not explicitly assigned to in the input line.

 This avoids running stty at every external command by accidentally exporting it.

 Also note that STTY should not be used for window size specifications; these will

 not be local to the command.

 TERM <S>

 The type of terminal in use. This is used when looking up termcap sequences. An

 assignment to TERM causes zsh to re-initialize the terminal, even if the value does

 not change (e.g., `TERM=$TERM'). It is necessary to make such an assignment upon

 any change to the terminal definition database or terminal type in order for the

 new settings to take effect.

 TERMINFO <S>

 A reference to your terminfo database, used by the `terminfo' library when the sys?

 tem has it; see terminfo(5). If set, this causes the shell to reinitialise the

 terminal, making the workaround `TERM=$TERM' unnecessary.

 TERMINFO_DIRS <S>

 A colon-seprarated list of terminfo databases, used by the `terminfo' library when

 the system has it; see terminfo(5). This variable is only used by certain terminal

 libraries, in particular ncurses; see terminfo(5) to check support on your system.

 If set, this causes the shell to reinitialise the terminal, making the workaround Page 28/34

 `TERM=$TERM' unnecessary. Note that unlike other colon-separated arrays this is

 not tied to a zsh array.

 TIMEFMT

 The format of process time reports with the time keyword. The default is `%J %U

 user %S system %P cpu %*E total'. Recognizes the following escape sequences, al?

 though not all may be available on all systems, and some that are available may not

 be useful:

 %% A `%'.

 %U CPU seconds spent in user mode.

 %S CPU seconds spent in kernel mode.

 %E Elapsed time in seconds.

 %P The CPU percentage, computed as 100*(%U+%S)/%E.

 %W Number of times the process was swapped.

 %X The average amount in (shared) text space used in kilobytes.

 %D The average amount in (unshared) data/stack space used in kilobytes.

 %K The total space used (%X+%D) in kilobytes.

 %M The maximum memory the process had in use at any time in kilobytes.

 %F The number of major page faults (page needed to be brought from disk).

 %R The number of minor page faults.

 %I The number of input operations.

 %O The number of output operations.

 %r The number of socket messages received.

 %s The number of socket messages sent.

 %k The number of signals received.

 %w Number of voluntary context switches (waits).

 %c Number of involuntary context switches.

 %J The name of this job.

 A star may be inserted between the percent sign and flags printing time (e.g.,

 `%*E'); this causes the time to be printed in `hh:mm:ss.ttt' format (hours and min?

 utes are only printed if they are not zero). Alternatively, `m' or `u' may be used

 (e.g., `%mE') to produce time output in milliseconds or microseconds, respectively.

 TMOUT If this parameter is nonzero, the shell will receive an ALRM signal if a command is

 not entered within the specified number of seconds after issuing a prompt. If there Page 29/34

 is a trap on SIGALRM, it will be executed and a new alarm is scheduled using the

 value of the TMOUT parameter after executing the trap. If no trap is set, and the

 idle time of the terminal is not less than the value of the TMOUT parameter, zsh

 terminates. Otherwise a new alarm is scheduled to TMOUT seconds after the last

 keypress.

 TMPPREFIX

 A pathname prefix which the shell will use for all temporary files. Note that this

 should include an initial part for the file name as well as any directory names.

 The default is `/tmp/zsh'.

 TMPSUFFIX

 A filename suffix which the shell will use for temporary files created by process

 substitutions (e.g., `=(list)'). Note that the value should include a leading dot

 `.' if intended to be interpreted as a file extension. The default is not to ap?

 pend any suffix, thus this parameter should be assigned only when needed and then

 unset again.

 watch <S> <Z> (WATCH <S>)

 An array (colon-separated list) of login/logout events to report.

 If it contains the single word `all', then all login/logout events are reported.

 If it contains the single word `notme', then all events are reported as with `all'

 except $USERNAME.

 An entry in this list may consist of a username, an `@' followed by a remote host?

 name, and a `%' followed by a line (tty). Any of these may be a pattern (be sure

 to quote this during the assignment to watch so that it does not immediately per?

 form file generation); the setting of the EXTENDED_GLOB option is respected. Any

 or all of these components may be present in an entry; if a login/logout event

 matches all of them, it is reported.

 For example, with the EXTENDED_GLOB option set, the following:

 watch=('^(pws|barts)')

 causes reports for activity associated with any user other than pws or barts.

 WATCHFMT

 The format of login/logout reports if the watch parameter is set. Default is `%n

 has %a %l from %m'. Recognizes the following escape sequences:

 %n The name of the user that logged in/out. Page 30/34

 %a The observed action, i.e. "logged on" or "logged off".

 %l The line (tty) the user is logged in on.

 %M The full hostname of the remote host.

 %m The hostname up to the first `.'. If only the IP address is available or

 the utmp field contains the name of an X-windows display, the whole name is

 printed.

 NOTE: The `%m' and `%M' escapes will work only if there is a host name field

 in the utmp on your machine. Otherwise they are treated as ordinary

 strings.

 %S (%s)

 Start (stop) standout mode.

 %U (%u)

 Start (stop) underline mode.

 %B (%b)

 Start (stop) boldface mode.

 %t

 %@ The time, in 12-hour, am/pm format.

 %T The time, in 24-hour format.

 %w The date in `day-dd' format.

 %W The date in `mm/dd/yy' format.

 %D The date in `yy-mm-dd' format.

 %D{string}

 The date formatted as string using the strftime function, with zsh exten?

 sions as described by EXPANSION OF PROMPT SEQUENCES in zshmisc(1).

 %(x:true-text:false-text)

 Specifies a ternary expression. The character following the x is arbitrary;

 the same character is used to separate the text for the "true" result from

 that for the "false" result. Both the separator and the right parenthesis

 may be escaped with a backslash. Ternary expressions may be nested.

 The test character x may be any one of `l', `n', `m' or `M', which indicate

 a `true' result if the corresponding escape sequence would return a

 non-empty value; or it may be `a', which indicates a `true' result if the

 watched user has logged in, or `false' if he has logged out. Other charac? Page 31/34

 ters evaluate to neither true nor false; the entire expression is omitted in

 this case.

 If the result is `true', then the true-text is formatted according to the

 rules above and printed, and the false-text is skipped. If `false', the

 true-text is skipped and the false-text is formatted and printed. Either or

 both of the branches may be empty, but both separators must be present in

 any case.

 WORDCHARS <S>

 A list of non-alphanumeric characters considered part of a word by the line editor.

 ZBEEP If set, this gives a string of characters, which can use all the same codes as the

 bindkey command as described in the zsh/zle module entry in zshmodules(1), that

 will be output to the terminal instead of beeping. This may have a visible instead

 of an audible effect; for example, the string `\e[?5h\e[?5l' on a vt100 or xterm

 will have the effect of flashing reverse video on and off (if you usually use re?

 verse video, you should use the string `\e[?5l\e[?5h' instead). This takes prece?

 dence over the NOBEEP option.

 ZDOTDIR

 The directory to search for shell startup files (.zshrc, etc), if not $HOME.

 zle_bracketed_paste

 Many terminal emulators have a feature that allows applications to identify when

 text is pasted into the terminal rather than being typed normally. For ZLE, this

 means that special characters such as tabs and newlines can be inserted instead of

 invoking editor commands. Furthermore, pasted text forms a single undo event and

 if the region is active, pasted text will replace the region.

 This two-element array contains the terminal escape sequences for enabling and dis?

 abling the feature. These escape sequences are used to enable bracketed paste when

 ZLE is active and disable it at other times. Unsetting the parameter has the ef?

 fect of ensuring that bracketed paste remains disabled.

 zle_highlight

 An array describing contexts in which ZLE should highlight the input text. See

 Character Highlighting in zshzle(1).

 ZLE_LINE_ABORTED

 This parameter is set by the line editor when an error occurs. It contains the Page 32/34

 line that was being edited at the point of the error. `print -zr --

 $ZLE_LINE_ABORTED' can be used to recover the line. Only the most recent line of

 this kind is remembered.

 ZLE_REMOVE_SUFFIX_CHARS

 ZLE_SPACE_SUFFIX_CHARS

 These parameters are used by the line editor. In certain circumstances suffixes

 (typically space or slash) added by the completion system will be removed automati?

 cally, either because the next editing command was not an insertable character, or

 because the character was marked as requiring the suffix to be removed.

 These variables can contain the sets of characters that will cause the suffix to be

 removed. If ZLE_REMOVE_SUFFIX_CHARS is set, those characters will cause the suffix

 to be removed; if ZLE_SPACE_SUFFIX_CHARS is set, those characters will cause the

 suffix to be removed and replaced by a space.

 If ZLE_REMOVE_SUFFIX_CHARS is not set, the default behaviour is equivalent to:

 ZLE_REMOVE_SUFFIX_CHARS=$' \t\n;&|'

 If ZLE_REMOVE_SUFFIX_CHARS is set but is empty, no characters have this behaviour.

 ZLE_SPACE_SUFFIX_CHARS takes precedence, so that the following:

 ZLE_SPACE_SUFFIX_CHARS=$'&|'

 causes the characters `&' and `|' to remove the suffix but to replace it with a

 space.

 To illustrate the difference, suppose that the option AUTO_REMOVE_SLASH is in ef?

 fect and the directory DIR has just been completed, with an appended /, following

 which the user types `&'. The default result is `DIR&'. With ZLE_REMOVE_SUF?

 FIX_CHARS set but without including `&' the result is `DIR/&'. With ZLE_SPACE_SUF?

 FIX_CHARS set to include `&' the result is `DIR &'.

 Note that certain completions may provide their own suffix removal or replacement

 behaviour which overrides the values described here. See the completion system

 documentation in zshcompsys(1).

 ZLE_RPROMPT_INDENT <S>

 If set, used to give the indentation between the right hand side of the right

 prompt in the line editor as given by RPS1 or RPROMPT and the right hand side of

 the screen. If not set, the value 1 is used.

 Typically this will be used to set the value to 0 so that the prompt appears flush Page 33/34

 with the right hand side of the screen. This is not the default as many terminals

 do not handle this correctly, in particular when the prompt appears at the extreme

 bottom right of the screen. Recent virtual terminals are more likely to handle

 this case correctly. Some experimentation is necessary.

zsh 5.8.1 February 12, 2022 ZSHPARAM(1)

Page 34/34

