
Rocky Enterprise Linux 9.2 Manual Pages on command 'zshcompwid.1'

$ man zshcompwid.1

ZSHCOMPWID(1) General Commands Manual ZSHCOMPWID(1)

NAME

 zshcompwid - zsh completion widgets

DESCRIPTION

 The shell's programmable completion mechanism can be manipulated in two ways; here the

 low-level features supporting the newer, function-based mechanism are defined. A complete

 set of shell functions based on these features is described in zshcompsys(1), and users

 with no interest in adding to that system (or, potentially, writing their own -- see dic?

 tionary entry for `hubris') should skip the current section. The older system based on

 the compctl builtin command is described in zshcompctl(1).

 Completion widgets are defined by the -C option to the zle builtin command provided by the

 zsh/zle module (see zshzle(1)). For example,

 zle -C complete expand-or-complete completer

 defines a widget named `complete'. The second argument is the name of any of the builtin

 widgets that handle completions: complete-word, expand-or-complete, expand-or-com?

 plete-prefix, menu-complete, menu-expand-or-complete, reverse-menu-complete, list-choices,

 or delete-char-or-list. Note that this will still work even if the widget in question has

 been re-bound.

 When this newly defined widget is bound to a key using the bindkey builtin command defined

 in the zsh/zle module (see zshzle(1)), typing that key will call the shell function `com?

 pleter'. This function is responsible for generating the possible matches using the

 builtins described below. As with other ZLE widgets, the function is called with its

 standard input closed. Page 1/23

 Once the function returns, the completion code takes over control again and treats the

 matches in the same manner as the specified builtin widget, in this case expand-or-com?

 plete.

COMPLETION SPECIAL PARAMETERS

 The parameters ZLE_REMOVE_SUFFIX_CHARS and ZLE_SPACE_SUFFIX_CHARS are used by the comple?

 tion mechanism, but are not special. See Parameters Used By The Shell in zshparam(1).

 Inside completion widgets, and any functions called from them, some parameters have spe?

 cial meaning; outside these functions they are not special to the shell in any way. These

 parameters are used to pass information between the completion code and the completion

 widget. Some of the builtin commands and the condition codes use or change the current

 values of these parameters. Any existing values will be hidden during execution of com?

 pletion widgets; except for compstate, the parameters are reset on each function exit (in?

 cluding nested function calls from within the completion widget) to the values they had

 when the function was entered.

 CURRENT

 This is the number of the current word, i.e. the word the cursor is currently on in

 the words array. Note that this value is only correct if the ksharrays option is

 not set.

 IPREFIX

 Initially this will be set to the empty string. This parameter functions like PRE?

 FIX; it contains a string which precedes the one in PREFIX and is not considered

 part of the list of matches. Typically, a string is transferred from the beginning

 of PREFIX to the end of IPREFIX, for example:

 IPREFIX=${PREFIX%%\=*}=

 PREFIX=${PREFIX#*=}

 causes the part of the prefix up to and including the first equal sign not to be

 treated as part of a matched string. This can be done automatically by the compset

 builtin, see below.

 ISUFFIX

 As IPREFIX, but for a suffix that should not be considered part of the matches;

 note that the ISUFFIX string follows the SUFFIX string.

 PREFIX Initially this will be set to the part of the current word from the beginning of

 the word up to the position of the cursor; it may be altered to give a common pre? Page 2/23

 fix for all matches.

 QIPREFIX

 This parameter is read-only and contains the quoted string up to the word being

 completed. E.g. when completing `"foo', this parameter contains the double quote.

 If the -q option of compset is used (see below), and the original string was `"foo

 bar' with the cursor on the `bar', this parameter contains `"foo '.

 QISUFFIX

 Like QIPREFIX, but containing the suffix.

 SUFFIX Initially this will be set to the part of the current word from the cursor position

 to the end; it may be altered to give a common suffix for all matches. It is most

 useful when the option COMPLETE_IN_WORD is set, as otherwise the whole word on the

 command line is treated as a prefix.

 compstate

 This is an associative array with various keys and values that the completion code

 uses to exchange information with the completion widget. The keys are:

 all_quotes

 The -q option of the compset builtin command (see below) allows a quoted

 string to be broken into separate words; if the cursor is on one of those

 words, that word will be completed, possibly invoking `compset -q' recur?

 sively. With this key it is possible to test the types of quoted strings

 which are currently broken into parts in this fashion. Its value contains

 one character for each quoting level. The characters are a single quote or

 a double quote for strings quoted with these characters, a dollars sign for

 strings quoted with $'...' and a backslash for strings not starting with a

 quote character. The first character in the value always corresponds to the

 innermost quoting level.

 context

 This will be set by the completion code to the overall context in which com?

 pletion is attempted. Possible values are:

 array_value

 when completing inside the value of an array parameter assignment; in

 this case the words array contains the words inside the parentheses.

 brace_parameter Page 3/23

 when completing the name of a parameter in a parameter expansion be?

 ginning with ${. This context will also be set when completing pa?

 rameter flags following ${(; the full command line argument is pre?

 sented and the handler must test the value to be completed to ascer?

 tain that this is the case.

 assign_parameter

 when completing the name of a parameter in a parameter assignment.

 command

 when completing for a normal command (either in command position or

 for an argument of the command).

 condition

 when completing inside a `[[...]]' conditional expression; in this

 case the words array contains only the words inside the conditional

 expression.

 math when completing in a mathematical environment such as a `((...))'

 construct.

 parameter

 when completing the name of a parameter in a parameter expansion be?

 ginning with $ but not ${.

 redirect

 when completing after a redirection operator.

 subscript

 when completing inside a parameter subscript.

 value when completing the value of a parameter assignment.

 exact Controls the behaviour when the REC_EXACT option is set. It will be set to

 accept if an exact match would be accepted, and will be unset otherwise.

 If it was set when at least one match equal to the string on the line was

 generated, the match is accepted.

 exact_string

 The string of an exact match if one was found, otherwise unset.

 ignored

 The number of words that were ignored because they matched one of the pat?

 terns given with the -F option to the compadd builtin command. Page 4/23

 insert This controls the manner in which a match is inserted into the command line.

 On entry to the widget function, if it is unset the command line is not to

 be changed; if set to unambiguous, any prefix common to all matches is to be

 inserted; if set to automenu-unambiguous, the common prefix is to be in?

 serted and the next invocation of the completion code may start menu comple?

 tion (due to the AUTO_MENU option being set); if set to menu or automenu

 menu completion will be started for the matches currently generated (in the

 latter case this will happen because the AUTO_MENU is set). The value may

 also contain the string `tab' when the completion code would normally not

 really do completion, but only insert the TAB character.

 On exit it may be set to any of the values above (where setting it to the

 empty string is the same as unsetting it), or to a number, in which case the

 match whose number is given will be inserted into the command line. Nega?

 tive numbers count backward from the last match (with `-1' selecting the

 last match) and out-of-range values are wrapped around, so that a value of

 zero selects the last match and a value one more than the maximum selects

 the first. Unless the value of this key ends in a space, the match is in?

 serted as in a menu completion, i.e. without automatically appending a

 space.

 Both menu and automenu may also specify the number of the match to insert,

 given after a colon. For example, `menu:2' says to start menu completion,

 beginning with the second match.

 Note that a value containing the substring `tab' makes the matches generated

 be ignored and only the TAB be inserted.

 Finally, it may also be set to all, which makes all matches generated be in?

 serted into the line.

 insert_positions

 When the completion system inserts an unambiguous string into the line,

 there may be multiple places where characters are missing or where the char?

 acter inserted differs from at least one match. The value of this key con?

 tains a colon separated list of all these positions, as indexes into the

 command line.

 last_prompt Page 5/23

 If this is set to a non-empty string for every match added, the completion

 code will move the cursor back to the previous prompt after the list of com?

 pletions has been displayed. Initially this is set or unset according to

 the ALWAYS_LAST_PROMPT option.

 list This controls whether or how the list of matches will be displayed. If it

 is unset or empty they will never be listed; if its value begins with list,

 they will always be listed; if it begins with autolist or ambiguous, they

 will be listed when the AUTO_LIST or LIST_AMBIGUOUS options respectively

 would normally cause them to be.

 If the substring force appears in the value, this makes the list be shown

 even if there is only one match. Normally, the list would be shown only if

 there are at least two matches.

 The value contains the substring packed if the LIST_PACKED option is set. If

 this substring is given for all matches added to a group, this group will

 show the LIST_PACKED behavior. The same is done for the LIST_ROWS_FIRST op?

 tion with the substring rows.

 Finally, if the value contains the string explanations, only the explanation

 strings, if any, will be listed and if it contains messages, only the mes?

 sages (added with the -x option of compadd) will be listed. If it contains

 both explanations and messages both kinds of explanation strings will be

 listed. It will be set appropriately on entry to a completion widget and

 may be changed there.

 list_lines

 This gives the number of lines that are needed to display the full list of

 completions. Note that to calculate the total number of lines to display

 you need to add the number of lines needed for the command line to this

 value, this is available as the value of the BUFFERLINES special parameter.

 list_max

 Initially this is set to the value of the LISTMAX parameter. It may be set

 to any other value; when the widget exits this value will be used in the

 same way as the value of LISTMAX.

 nmatches

 The number of matches generated and accepted by the completion code so far. Page 6/23

 old_insert

 On entry to the widget this will be set to the number of the match of an old

 list of completions that is currently inserted into the command line. If no

 match has been inserted, this is unset.

 As with old_list, the value of this key will only be used if it is the

 string keep. If it was set to this value by the widget and there was an old

 match inserted into the command line, this match will be kept and if the

 value of the insert key specifies that another match should be inserted,

 this will be inserted after the old one.

 old_list

 This is set to yes if there is still a valid list of completions from a pre?

 vious completion at the time the widget is invoked. This will usually be

 the case if and only if the previous editing operation was a completion wid?

 get or one of the builtin completion functions. If there is a valid list

 and it is also currently shown on the screen, the value of this key is

 shown.

 After the widget has exited the value of this key is only used if it was set

 to keep. In this case the completion code will continue to use this old

 list. If the widget generated new matches, they will not be used.

 parameter

 The name of the parameter when completing in a subscript or in the value of

 a parameter assignment.

 pattern_insert

 Normally this is set to menu, which specifies that menu completion will be

 used whenever a set of matches was generated using pattern matching. If it

 is set to any other non-empty string by the user and menu completion is not

 selected by other option settings, the code will instead insert any common

 prefix for the generated matches as with normal completion.

 pattern_match

 Locally controls the behaviour given by the GLOB_COMPLETE option. Initially

 it is set to `*' if and only if the option is set. The completion widget

 may set it to this value, to an empty string (which has the same effect as

 unsetting it), or to any other non-empty string. If it is non-empty, un? Page 7/23

 quoted metacharacters on the command line will be treated as patterns; if it

 is `*', then additionally a wildcard `*' is assumed at the cursor position;

 if it is empty or unset, metacharacters will be treated literally.

 Note that the matcher specifications given to the compadd builtin command

 are not used if this is set to a non-empty string.

 quote When completing inside quotes, this contains the quotation character (i.e.

 either a single quote, a double quote, or a backtick). Otherwise it is un?

 set.

 quoting

 When completing inside single quotes, this is set to the string single; in?

 side double quotes, the string double; inside backticks, the string back?

 tick. Otherwise it is unset.

 redirect

 The redirection operator when completing in a redirection position, i.e. one

 of <, >, etc.

 restore

 This is set to auto before a function is entered, which forces the special

 parameters mentioned above (words, CURRENT, PREFIX, IPREFIX, SUFFIX, and

 ISUFFIX) to be restored to their previous values when the function exits.

 If a function unsets it or sets it to any other string, they will not be re?

 stored.

 to_end Specifies the occasions on which the cursor is moved to the end of a string

 when a match is inserted. On entry to a widget function, it may be single

 if this will happen when a single unambiguous match was inserted or match if

 it will happen any time a match is inserted (for example, by menu comple?

 tion; this is likely to be the effect of the ALWAYS_TO_END option).

 On exit, it may be set to single as above. It may also be set to always, or

 to the empty string or unset; in those cases the cursor will be moved to the

 end of the string always or never respectively. Any other string is treated

 as match.

 unambiguous

 This key is read-only and will always be set to the common (unambiguous)

 prefix the completion code has generated for all matches added so far. Page 8/23

 unambiguous_cursor

 This gives the position the cursor would be placed at if the common prefix

 in the unambiguous key were inserted, relative to the value of that key. The

 cursor would be placed before the character whose index is given by this

 key.

 unambiguous_positions

 This contains all positions where characters in the unambiguous string are

 missing or where the character inserted differs from at least one of the

 matches. The positions are given as indexes into the string given by the

 value of the unambiguous key.

 vared If completion is called while editing a line using the vared builtin, the

 value of this key is set to the name of the parameter given as an argument

 to vared. This key is only set while a vared command is active.

 words This array contains the words present on the command line currently being edited.

COMPLETION BUILTIN COMMANDS

 compadd [-akqQfenUl12C] [-F array]

 [-P prefix] [-S suffix]

 [-p hidden-prefix] [-s hidden-suffix]

 [-i ignored-prefix] [-I ignored-suffix]

 [-W file-prefix] [-d array]

 [-J group-name] [-X explanation] [-x message]

 [-V group-name] [-o [order]]

 [-r remove-chars] [-R remove-func]

 [-D array] [-O array] [-A array]

 [-E number]

 [-M match-spec] [--] [words ...]

 This builtin command can be used to add matches directly and control all the infor?

 mation the completion code stores with each possible match. The return status is

 zero if at least one match was added and non-zero if no matches were added.

 The completion code breaks the string to complete into seven fields in the order:

 <ipre><apre><hpre><word><hsuf><asuf><isuf>

 The first field is an ignored prefix taken from the command line, the contents of

 the IPREFIX parameter plus the string given with the -i option. With the -U option, Page 9/23

 only the string from the -i option is used. The field <apre> is an optional prefix

 string given with the -P option. The <hpre> field is a string that is considered

 part of the match but that should not be shown when listing completions, given with

 the -p option; for example, functions that do filename generation might specify a

 common path prefix this way. <word> is the part of the match that should appear in

 the list of completions, i.e. one of the words given at the end of the compadd com?

 mand line. The suffixes <hsuf>, <asuf> and <isuf> correspond to the prefixes

 <hpre>, <apre> and <ipre> and are given by the options -s, -S and -I, respectively.

 The supported flags are:

 -P prefix

 This gives a string to be inserted before the given words. The string given

 is not considered as part of the match and any shell metacharacters in it

 will not be quoted when the string is inserted.

 -S suffix

 Like -P, but gives a string to be inserted after the match.

 -p hidden-prefix

 This gives a string that should be inserted into the command line before the

 match but that should not appear in the list of matches. Unless the -U op?

 tion is given, this string must be matched as part of the string on the com?

 mand line.

 -s hidden-suffix

 Like `-p', but gives a string to insert after the match.

 -i ignored-prefix

 This gives a string to insert into the command line just before any string

 given with the `-P' option. Without `-P' the string is inserted before the

 string given with `-p' or directly before the match.

 -I ignored-suffix

 Like -i, but gives an ignored suffix.

 -a With this flag the words are taken as names of arrays and the possible

 matches are their values. If only some elements of the arrays are needed,

 the words may also contain subscripts, as in `foo[2,-1]'.

 -k With this flag the words are taken as names of associative arrays and the

 possible matches are their keys. As for -a, the words may also contain sub? Page 10/23

 scripts, as in `foo[(R)*bar*]'.

 -d array

 This adds per-match display strings. The array should contain one element

 per word given. The completion code will then display the first element in?

 stead of the first word, and so on. The array may be given as the name of an

 array parameter or directly as a space-separated list of words in parenthe?

 ses.

 If there are fewer display strings than words, the leftover words will be

 displayed unchanged and if there are more display strings than words, the

 leftover display strings will be silently ignored.

 -l This option only has an effect if used together with the -d option. If it is

 given, the display strings are listed one per line, not arrayed in columns.

 -o [order]

 This controls the order in which matches are sorted. order is a comma-sepa?

 rated list comprising the following possible values. These values can be

 abbreviated to their initial two or three characters. Note that the order

 forms part of the group name space so matches with different orderings will

 not be in the same group.

 match If given, the order of the output is determined by the match strings;

 otherwise it is determined by the display strings (i.e. the strings

 given by the -d option). This is the default if `-o' is specified but

 the order argument is omitted.

 nosort This specifies that the matches are pre-sorted and their order should

 be preserved. This value only makes sense alone and cannot be com?

 bined with any others.

 numeric

 If the matches include numbers, sort them numerically rather than

 lexicographically.

 reverse

 Arrange the matches backwards by reversing the sort ordering.

 -J group-name

 Gives the name of the group of matches the words should be stored in.

 -V group-name Page 11/23

 Like -J but naming an unsorted group. This option is identical to the combi?

 nation of -J and -o nosort.

 -1 If given together with the -V option, makes only consecutive duplicates in

 the group be removed. If combined with the -J option, this has no visible

 effect. Note that groups with and without this flag are in different name

 spaces.

 -2 If given together with the -J or -V option, makes all duplicates be kept.

 Again, groups with and without this flag are in different name spaces.

 -X explanation

 The explanation string will be printed with the list of matches, above the

 group currently selected.

 Within the explanation, the following sequences may be used to specify out?

 put attributes as described in the section EXPANSION OF PROMPT SEQUENCES in

 zshmisc(1): `%B', `%S', `%U', `%F', `%K' and their lower case counterparts,

 as well as `%{...%}'. `%F', `%K' and `%{...%}' take arguments in the same

 form as prompt expansion. (Note that the sequence `%G' is not available; an

 argument to `%{' should be used instead.) The sequence `%%' produces a lit?

 eral `%'.

 These sequences are most often employed by users when customising the format

 style (see zshcompsys(1)), but they must also be taken into account when

 writing completion functions, as passing descriptions with unescaped `%'

 characters to utility functions such as _arguments and _message may produce

 unexpected results. If arbitrary text is to be passed in a description, it

 can be escaped using e.g. ${my_str//\%/%%}.

 -x message

 Like -X, but the message will be printed even if there are no matches in the

 group.

 -q The suffix given with -S will be automatically removed if the next character

 typed is a blank or does not insert anything, or if the suffix consists of

 only one character and the next character typed is the same character.

 -r remove-chars

 This is a more versatile form of the -q option. The suffix given with -S or

 the slash automatically added after completing directories will be automati? Page 12/23

 cally removed if the next character typed inserts one of the characters

 given in the remove-chars. This string is parsed as a characters class and

 understands the backslash sequences used by the print command. For example,

 `-r "a-z\t"' removes the suffix if the next character typed inserts a lower

 case character or a TAB, and `-r "^0-9"' removes the suffix if the next

 character typed inserts anything but a digit. One extra backslash sequence

 is understood in this string: `\-' stands for all characters that insert

 nothing. Thus `-S "=" -q' is the same as `-S "=" -r "= \t\n\-"'.

 This option may also be used without the -S option; then any automatically

 added space will be removed when one of the characters in the list is typed.

 -R remove-func

 This is another form of the -r option. When a suffix has been inserted and

 the completion accepted, the function remove-func will be called after the

 next character typed. It is passed the length of the suffix as an argument

 and can use the special parameters available in ordinary (non-completion)

 zle widgets (see zshzle(1)) to analyse and modify the command line.

 -f If this flag is given, all of the matches built from words are marked as be?

 ing the names of files. They are not required to be actual filenames, but

 if they are, and the option LIST_TYPES is set, the characters describing the

 types of the files in the completion lists will be shown. This also forces a

 slash to be added when the name of a directory is completed.

 -e This flag can be used to tell the completion code that the matches added are

 parameter names for a parameter expansion. This will make the

 AUTO_PARAM_SLASH and AUTO_PARAM_KEYS options be used for the matches.

 -W file-prefix

 This string is a pathname that will be prepended to each of the matches

 formed by the given words together with any prefix specified by the -p op?

 tion to form a complete filename for testing. Hence it is only useful if

 combined with the -f flag, as the tests will not otherwise be performed.

 -F array

 Specifies an array containing patterns. Words matching one of these patterns

 are ignored, i.e. not considered to be possible matches.

 The array may be the name of an array parameter or a list of literal pat? Page 13/23

 terns enclosed in parentheses and quoted, as in `-F "(*?.o *?.h)"'. If the

 name of an array is given, the elements of the array are taken as the pat?

 terns.

 -Q This flag instructs the completion code not to quote any metacharacters in

 the words when inserting them into the command line.

 -M match-spec

 This gives local match specifications as described below in the section

 `Completion Matching Control'. This option may be given more than once. In

 this case all match-specs given are concatenated with spaces between them to

 form the specification string to use. Note that they will only be used if

 the -U option is not given.

 -n Specifies that the words added are to be used as possible matches, but are

 not to appear in the completion listing.

 -U If this flag is given, all words given will be accepted and no matching will

 be done by the completion code. Normally this is used in functions that do

 the matching themselves.

 -O array

 If this option is given, the words are not added to the set of possible com?

 pletions. Instead, matching is done as usual and all of the words given as

 arguments that match the string on the command line will be stored in the

 array parameter whose name is given as array.

 -A array

 As the -O option, except that instead of those of the words which match be?

 ing stored in array, the strings generated internally by the completion code

 are stored. For example, with a matching specification of `-M "L:|no="', the

 string `nof' on the command line and the string `foo' as one of the words,

 this option stores the string `nofoo' in the array, whereas the -O option

 stores the `foo' originally given.

 -D array

 As with -O, the words are not added to the set of possible completions. In?

 stead, the completion code tests whether each word in turn matches what is

 on the line. If the nth word does not match, the nth element of the array

 is removed. Elements for which the corresponding word is matched are re? Page 14/23

 tained.

 -C This option adds a special match which expands to all other matches when in?

 serted into the line, even those that are added after this option is used.

 Together with the -d option it is possible to specify a string that should

 be displayed in the list for this special match. If no string is given, it

 will be shown as a string containing the strings that would be inserted for

 the other matches, truncated to the width of the screen.

 -E number

 This option adds number empty matches after the words have been added. An

 empty match takes up space in completion listings but will never be inserted

 in the line and can't be selected with menu completion or menu selection.

 This makes empty matches only useful to format completion lists and to make

 explanatory string be shown in completion lists (since empty matches can be

 given display strings with the -d option). And because all but one empty

 string would otherwise be removed, this option implies the -V and -2 options

 (even if an explicit -J option is given). This can be important to note as

 it affects the name space into which matches are added.

 -

 -- This flag ends the list of flags and options. All arguments after it will be

 taken as the words to use as matches even if they begin with hyphens.

 Except for the -M flag, if any of these flags is given more than once, the first

 one (and its argument) will be used.

 compset -p number

 compset -P [number] pattern

 compset -s number

 compset -S [number] pattern

 compset -n begin [end]

 compset -N beg-pat [end-pat]

 compset -q

 This command simplifies modification of the special parameters, while its return

 status allows tests on them to be carried out.

 The options are:

 -p number Page 15/23

 If the value of the PREFIX parameter is at least number characters long, the

 first number characters are removed from it and appended to the contents of

 the IPREFIX parameter.

 -P [number] pattern

 If the value of the PREFIX parameter begins with anything that matches the

 pattern, the matched portion is removed from PREFIX and appended to IPREFIX.

 Without the optional number, the longest match is taken, but if number is

 given, anything up to the numberth match is moved. If the number is nega?

 tive, the numberth longest match is moved. For example, if PREFIX contains

 the string `a=b=c', then compset -P '*\=' will move the string `a=b=' into

 the IPREFIX parameter, but compset -P 1 '*\=' will move only the string

 `a='.

 -s number

 As -p, but transfer the last number characters from the value of SUFFIX to

 the front of the value of ISUFFIX.

 -S [number] pattern

 As -P, but match the last portion of SUFFIX and transfer the matched portion

 to the front of the value of ISUFFIX.

 -n begin [end]

 If the current word position as specified by the parameter CURRENT is

 greater than or equal to begin, anything up to the beginth word is removed

 from the words array and the value of the parameter CURRENT is decremented

 by begin.

 If the optional end is given, the modification is done only if the current

 word position is also less than or equal to end. In this case, the words

 from position end onwards are also removed from the words array.

 Both begin and end may be negative to count backwards from the last element

 of the words array.

 -N beg-pat [end-pat]

 If one of the elements of the words array before the one at the index given

 by the value of the parameter CURRENT matches the pattern beg-pat, all ele?

 ments up to and including the matching one are removed from the words array

 and the value of CURRENT is changed to point to the same word in the changed Page 16/23

 array.

 If the optional pattern end-pat is also given, and there is an element in

 the words array matching this pattern, the parameters are modified only if

 the index of this word is higher than the one given by the CURRENT parameter

 (so that the matching word has to be after the cursor). In this case, the

 words starting with the one matching end-pat are also removed from the words

 array. If words contains no word matching end-pat, the testing and modifica?

 tion is performed as if it were not given.

 -q The word currently being completed is split on spaces into separate words,

 respecting the usual shell quoting conventions. The resulting words are

 stored in the words array, and CURRENT, PREFIX, SUFFIX, QIPREFIX, and QISUF?

 FIX are modified to reflect the word part that is completed.

 In all the above cases the return status is zero if the test succeeded and the pa?

 rameters were modified and non-zero otherwise. This allows one to use this builtin

 in tests such as:

 if compset -P '*\='; then ...

 This forces anything up to and including the last equal sign to be ignored by the

 completion code.

 compcall [-TD]

 This allows the use of completions defined with the compctl builtin from within

 completion widgets. The list of matches will be generated as if one of the

 non-widget completion functions (complete-word, etc.) had been called, except that

 only compctls given for specific commands are used. To force the code to try com?

 pletions defined with the -T option of compctl and/or the default completion

 (whether defined by compctl -D or the builtin default) in the appropriate places,

 the -T and/or -D flags can be passed to compcall.

 The return status can be used to test if a matching compctl definition was found.

 It is non-zero if a compctl was found and zero otherwise.

 Note that this builtin is defined by the zsh/compctl module.

COMPLETION CONDITION CODES

 The following additional condition codes for use within the [[...]] construct are avail?

 able in completion widgets. These work on the special parameters. All of these tests can

 also be performed by the compset builtin, but in the case of the condition codes the con? Page 17/23

 tents of the special parameters are not modified.

 -prefix [number] pattern

 true if the test for the -P option of compset would succeed.

 -suffix [number] pattern

 true if the test for the -S option of compset would succeed.

 -after beg-pat

 true if the test of the -N option with only the beg-pat given would succeed.

 -between beg-pat end-pat

 true if the test for the -N option with both patterns would succeed.

COMPLETION MATCHING CONTROL

 It is possible by use of the -M option of the compadd builtin command to specify how the

 characters in the string to be completed (referred to here as the command line) map onto

 the characters in the list of matches produced by the completion code (referred to here as

 the trial completions). Note that this is not used if the command line contains a glob

 pattern and the GLOB_COMPLETE option is set or the pattern_match of the compstate special

 association is set to a non-empty string.

 The match-spec given as the argument to the -M option (see `Completion Builtin Commands'

 above) consists of one or more matching descriptions separated by whitespace. Each de?

 scription consists of a letter followed by a colon and then the patterns describing which

 character sequences on the line match which character sequences in the trial completion.

 Any sequence of characters not handled in this fashion must match exactly, as usual.

 The forms of match-spec understood are as follows. In each case, the form with an upper

 case initial character retains the string already typed on the command line as the final

 result of completion, while with a lower case initial character the string on the command

 line is changed into the corresponding part of the trial completion.

 m:lpat=tpat

 M:lpat=tpat

 Here, lpat is a pattern that matches on the command line, corresponding to tpat

 which matches in the trial completion.

 l:lanchor|lpat=tpat

 L:lanchor|lpat=tpat

 l:lanchor||ranchor=tpat

 L:lanchor||ranchor=tpat Page 18/23

 b:lpat=tpat

 B:lpat=tpat

 These letters are for patterns that are anchored by another pattern on the left

 side. Matching for lpat and tpat is as for m and M, but the pattern lpat matched on

 the command line must be preceded by the pattern lanchor. The lanchor can be blank

 to anchor the match to the start of the command line string; otherwise the anchor

 can occur anywhere, but must match in both the command line and trial completion

 strings.

 If no lpat is given but a ranchor is, this matches the gap between substrings

 matched by lanchor and ranchor. Unlike lanchor, the ranchor only needs to match the

 trial completion string.

 The b and B forms are similar to l and L with an empty anchor, but need to match

 only the beginning of the word on the command line or trial completion, respec?

 tively.

 r:lpat|ranchor=tpat

 R:lpat|ranchor=tpat

 r:lanchor||ranchor=tpat

 R:lanchor||ranchor=tpat

 e:lpat=tpat

 E:lpat=tpat

 As l, L, b and B, with the difference that the command line and trial completion

 patterns are anchored on the right side. Here an empty ranchor and the e and E

 forms force the match to the end of the command line or trial completion string.

 x: This form is used to mark the end of matching specifications: subsequent specifica?

 tions are ignored. In a single standalone list of specifications this has no use

 but where matching specifications are accumulated, such as from nested function

 calls, it can allow one function to override another.

 Each lpat, tpat or anchor is either an empty string or consists of a sequence of literal

 characters (which may be quoted with a backslash), question marks, character classes, and

 correspondence classes; ordinary shell patterns are not used. Literal characters match

 only themselves, question marks match any character, and character classes are formed as

 for globbing and match any character in the given set.

 Correspondence classes are defined like character classes, but with two differences: they Page 19/23

 are delimited by a pair of braces, and negated classes are not allowed, so the characters

 ! and ^ have no special meaning directly after the opening brace. They indicate that a

 range of characters on the line match a range of characters in the trial completion, but

 (unlike ordinary character classes) paired according to the corresponding position in the

 sequence. For example, to make any ASCII lower case letter on the line match the corre?

 sponding upper case letter in the trial completion, you can use `m:{a-z}={A-Z}' (however,

 see below for the recommended form for this). More than one pair of classes can occur, in

 which case the first class before the = corresponds to the first after it, and so on. If

 one side has more such classes than the other side, the superfluous classes behave like

 normal character classes. In anchor patterns correspondence classes also behave like nor?

 mal character classes.

 The standard `[:name:]' forms described for standard shell patterns (see the section FILE?

 NAME GENERATION in zshexpn(1)) may appear in correspondence classes as well as normal

 character classes. The only special behaviour in correspondence classes is if the form on

 the left and the form on the right are each one of [:upper:], [:lower:]. In these cases

 the character in the word and the character on the line must be the same up to a differ?

 ence in case. Hence to make any lower case character on the line match the corresponding

 upper case character in the trial completion you can use `m:{[:lower:]}={[:upper:]}'. Al?

 though the matching system does not yet handle multibyte characters, this is likely to be

 a future extension, at which point this syntax will handle arbitrary alphabets; hence this

 form, rather than the use of explicit ranges, is the recommended form. In other cases

 `[:name:]' forms are allowed. If the two forms on the left and right are the same, the

 characters must match exactly. In remaining cases, the corresponding tests are applied to

 both characters, but they are not otherwise constrained; any matching character in one set

 goes with any matching character in the other set: this is equivalent to the behaviour of

 ordinary character classes.

 The pattern tpat may also be one or two stars, `*' or `**'. This means that the pattern on

 the command line can match any number of characters in the trial completion. In this case

 the pattern must be anchored (on either side); in the case of a single star, the anchor

 then determines how much of the trial completion is to be included -- only the characters

 up to the next appearance of the anchor will be matched. With two stars, substrings

 matched by the anchor can be matched, too.

 Examples: Page 20/23

 The keys of the options association defined by the parameter module are the option names

 in all-lower-case form, without underscores, and without the optional no at the beginning

 even though the builtins setopt and unsetopt understand option names with upper case let?

 ters, underscores, and the optional no. The following alters the matching rules so that

 the prefix no and any underscore are ignored when trying to match the trial completions

 generated and upper case letters on the line match the corresponding lower case letters in

 the words:

 compadd -M 'L:|[nN][oO]= M:_= M:{[:upper:]}={[:lower:]}' - \

 ${(k)options}

 The first part says that the pattern `[nN][oO]' at the beginning (the empty anchor before

 the pipe symbol) of the string on the line matches the empty string in the list of words

 generated by completion, so it will be ignored if present. The second part does the same

 for an underscore anywhere in the command line string, and the third part uses correspon?

 dence classes so that any upper case letter on the line matches the corresponding lower

 case letter in the word. The use of the upper case forms of the specification characters

 (L and M) guarantees that what has already been typed on the command line (in particular

 the prefix no) will not be deleted.

 Note that the use of L in the first part means that it matches only when at the beginning

 of both the command line string and the trial completion. I.e., the string `_NO_f' would

 not be completed to `_NO_foo', nor would `NONO_f' be completed to `NONO_foo' because of

 the leading underscore or the second `NO' on the line which makes the pattern fail even

 though they are otherwise ignored. To fix this, one would use `B:[nN][oO]=' instead of the

 first part. As described above, this matches at the beginning of the trial completion, in?

 dependent of other characters or substrings at the beginning of the command line word

 which are ignored by the same or other match-specs.

 The second example makes completion case insensitive. This is just the same as in the op?

 tion example, except here we wish to retain the characters in the list of completions:

 compadd -M 'm:{[:lower:]}={[:upper:]}' ...

 This makes lower case letters match their upper case counterparts. To make upper case

 letters match the lower case forms as well:

 compadd -M 'm:{[:lower:][:upper:]}={[:upper:][:lower:]}' ...

 A nice example for the use of * patterns is partial word completion. Sometimes you would

 like to make strings like `c.s.u' complete to strings like `comp.source.unix', i.e. the Page 21/23

 word on the command line consists of multiple parts, separated by a dot in this example,

 where each part should be completed separately -- note, however, that the case where each

 part of the word, i.e. `comp', `source' and `unix' in this example, is to be completed

 from separate sets of matches is a different problem to be solved by the implementation of

 the completion widget. The example can be handled by:

 compadd -M 'r:|.=* r:|=*' \

 - comp.sources.unix comp.sources.misc ...

 The first specification says that lpat is the empty string, while anchor is a dot; tpat is

 *, so this can match anything except for the `.' from the anchor in the trial completion

 word. So in `c.s.u', the matcher sees `c', followed by the empty string, followed by the

 anchor `.', and likewise for the second dot, and replaces the empty strings before the an?

 chors, giving `c[omp].s[ources].u[nix]', where the last part of the completion is just as

 normal.

 With the pattern shown above, the string `c.u' could not be completed to

 `comp.sources.unix' because the single star means that no dot (matched by the anchor) can

 be skipped. By using two stars as in `r:|.=**', however, `c.u' could be completed to

 `comp.sources.unix'. This also shows that in some cases, especially if the anchor is a

 real pattern, like a character class, the form with two stars may result in more matches

 than one would like.

 The second specification is needed to make this work when the cursor is in the middle of

 the string on the command line and the option COMPLETE_IN_WORD is set. In this case the

 completion code would normally try to match trial completions that end with the string as

 typed so far, i.e. it will only insert new characters at the cursor position rather than

 at the end. However in our example we would like the code to recognise matches which con?

 tain extra characters after the string on the line (the `nix' in the example). Hence we

 say that the empty string at the end of the string on the line matches any characters at

 the end of the trial completion.

 More generally, the specification

 compadd -M 'r:|[.,_-]=* r:|=*' ...

 allows one to complete words with abbreviations before any of the characters in the square

 brackets. For example, to complete veryverylongfile.c rather than veryverylongheader.h

 with the above in effect, you can just type very.c before attempting completion.

 The specifications with both a left and a right anchor are useful to complete partial Page 22/23

 words whose parts are not separated by some special character. For example, in some places

 strings have to be completed that are formed `LikeThis' (i.e. the separate parts are de?

 termined by a leading upper case letter) or maybe one has to complete strings with trail?

 ing numbers. Here one could use the simple form with only one anchor as in:

 compadd -M 'r:|[[:upper:]0-9]=* r:|=*' LikeTHIS FooHoo 5foo123 5bar234

 But with this, the string `H' would neither complete to `FooHoo' nor to `LikeTHIS' because

 in each case there is an upper case letter before the `H' and that is matched by the an?

 chor. Likewise, a `2' would not be completed. In both cases this could be changed by using

 `r:|[[:upper:]0-9]=**', but then `H' completes to both `LikeTHIS' and `FooHoo' and a `2'

 matches the other strings because characters can be inserted before every upper case let?

 ter and digit. To avoid this one would use:

 compadd -M 'r:[^[:upper:]0-9]||[[:upper:]0-9]=** r:|=*' \

 LikeTHIS FooHoo foo123 bar234

 By using these two anchors, a `H' matches only upper case `H's that are immediately pre?

 ceded by something matching the left anchor `[^[:upper:]0-9]'. The effect is, of course,

 that `H' matches only the string `FooHoo', a `2' matches only `bar234' and so on.

 When using the completion system (see zshcompsys(1)), users can define match specifica?

 tions that are to be used for specific contexts by using the matcher and matcher-list

 styles. The values for the latter will be used everywhere.

COMPLETION WIDGET EXAMPLE

 The first step is to define the widget:

 zle -C complete complete-word complete-files

 Then the widget can be bound to a key using the bindkey builtin command:

 bindkey '^X\t' complete

 After that the shell function complete-files will be invoked after typing control-X and

 TAB. The function should then generate the matches, e.g.:

 complete-files () { compadd - * }

 This function will complete files in the current directory matching the current word.

zsh 5.8.1 February 12, 2022 ZSHCOMPWID(1)

Page 23/23

