
Rocky Enterprise Linux 9.2 Manual Pages on command 'zsh.1'

$ man zsh.1

ZSH(1) General Commands Manual ZSH(1)

NAME

 zsh - the Z shell

OVERVIEW

 Because zsh contains many features, the zsh manual has been split into a number of sec?

 tions:

 zsh Zsh overview (this section)

 zshroadmap Informal introduction to the manual

 zshmisc Anything not fitting into the other sections

 zshexpn Zsh command and parameter expansion

 zshparam Zsh parameters

 zshoptions Zsh options

 zshbuiltins Zsh built-in functions

 zshzle Zsh command line editing

 zshcompwid Zsh completion widgets

 zshcompsys Zsh completion system

 zshcompctl Zsh completion control

 zshmodules Zsh loadable modules

 zshcalsys Zsh built-in calendar functions

 zshtcpsys Zsh built-in TCP functions

 zshzftpsys Zsh built-in FTP client

 zshcontrib Additional zsh functions and utilities

 zshall Meta-man page containing all of the above Page 1/9

DESCRIPTION

 Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a

 shell script command processor. Of the standard shells, zsh most closely resembles ksh

 but includes many enhancements. It does not provide compatibility with POSIX or other

 shells in its default operating mode: see the section Compatibility below.

 Zsh has command line editing, builtin spelling correction, programmable command comple?

 tion, shell functions (with autoloading), a history mechanism, and a host of other fea?

 tures.

AUTHOR

 Zsh was originally written by Paul Falstad <pf@zsh.org>. Zsh is now maintained by the

 members of the zsh-workers mailing list <zsh-workers@zsh.org>. The development is cur?

 rently coordinated by Peter Stephenson <pws@zsh.org>. The coordinator can be contacted at

 <coordinator@zsh.org>, but matters relating to the code should generally go to the mailing

 list.

AVAILABILITY

 Zsh is available from the following HTTP and anonymous FTP site.

 ftp://ftp.zsh.org/pub/

 https://www.zsh.org/pub/

)

 The up-to-date source code is available via Git from Sourceforge. See https://source?

 forge.net/projects/zsh/ for details. A summary of instructions for the archive can be

 found at http://zsh.sourceforge.net/.

MAILING LISTS

 Zsh has 3 mailing lists:

 <zsh-announce@zsh.org>

 Announcements about releases, major changes in the shell and the monthly posting of

 the Zsh FAQ. (moderated)

 <zsh-users@zsh.org>

 User discussions.

 <zsh-workers@zsh.org>

 Hacking, development, bug reports and patches.

 To subscribe or unsubscribe, send mail to the associated administrative address for the

 mailing list. Page 2/9

 <zsh-announce-subscribe@zsh.org>

 <zsh-users-subscribe@zsh.org>

 <zsh-workers-subscribe@zsh.org>

 <zsh-announce-unsubscribe@zsh.org>

 <zsh-users-unsubscribe@zsh.org>

 <zsh-workers-unsubscribe@zsh.org>

 YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED. All submissions to

 zsh-announce are automatically forwarded to zsh-users. All submissions to zsh-users are

 automatically forwarded to zsh-workers.

 If you have problems subscribing/unsubscribing to any of the mailing lists, send mail to

 <listmaster@zsh.org>. The mailing lists are maintained by Karsten Thygesen

 <karthy@kom.auc.dk>.

 The mailing lists are archived; the archives can be accessed via the administrative ad?

 dresses listed above. There is also a hypertext archive, maintained by Geoff Wing

 <gcw@zsh.org>, available at https://www.zsh.org/mla/.

THE ZSH FAQ

 Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson

 <pws@zsh.org>. It is regularly posted to the newsgroup comp.unix.shell and the zsh-an?

 nounce mailing list. The latest version can be found at any of the Zsh FTP sites, or at

 http://www.zsh.org/FAQ/. The contact address for FAQ-related matters is <faqmas?

 ter@zsh.org>.

THE ZSH WEB PAGE

 Zsh has a web page which is located at https://www.zsh.org/. This is maintained by

 Karsten Thygesen <karthy@zsh.org>, of SunSITE Denmark. The contact address for web-re?

 lated matters is <webmaster@zsh.org>.

THE ZSH USERGUIDE

 A userguide is currently in preparation. It is intended to complement the manual, with

 explanations and hints on issues where the manual can be cabbalistic, hierographic, or

 downright mystifying (for example, the word `hierographic' does not exist). It can be

 viewed in its current state at http://zsh.sourceforge.net/Guide/. At the time of writing,

 chapters dealing with startup files and their contents and the new completion system were

 essentially complete.

INVOCATION Page 3/9

 The following flags are interpreted by the shell when invoked to determine where the shell

 will read commands from:

 -c Take the first argument as a command to execute, rather than reading commands from

 a script or standard input. If any further arguments are given, the first one is

 assigned to $0, rather than being used as a positional parameter.

 -i Force shell to be interactive. It is still possible to specify a script to exe?

 cute.

 -s Force shell to read commands from the standard input. If the -s flag is not

 present and an argument is given, the first argument is taken to be the pathname of

 a script to execute.

 If there are any remaining arguments after option processing, and neither of the options

 -c or -s was supplied, the first argument is taken as the file name of a script containing

 shell commands to be executed. If the option PATH_SCRIPT is set, and the file name does

 not contain a directory path (i.e. there is no `/' in the name), first the current direc?

 tory and then the command path given by the variable PATH are searched for the script. If

 the option is not set or the file name contains a `/' it is used directly.

 After the first one or two arguments have been appropriated as described above, the re?

 maining arguments are assigned to the positional parameters.

 For further options, which are common to invocation and the set builtin, see zshop?

 tions(1).

 The long option `--emulate' followed (in a separate word) by an emulation mode may be

 passed to the shell. The emulation modes are those described for the emulate builtin, see

 zshbuiltins(1). The `--emulate' option must precede any other options (which might other?

 wise be overridden), but following options are honoured, so may be used to modify the re?

 quested emulation mode. Note that certain extra steps are taken to ensure a smooth emula?

 tion when this option is used compared with the emulate command within the shell: for ex?

 ample, variables that conflict with POSIX usage such as path are not defined within the

 shell.

 Options may be specified by name using the -o option. -o acts like a single-letter op?

 tion, but takes a following string as the option name. For example,

 zsh -x -o shwordsplit scr

 runs the script scr, setting the XTRACE option by the corresponding letter `-x' and the

 SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of Page 4/9

 -o. -o can be stacked up with preceding single-letter options, so for example `-xo

 shwordsplit' or `-xoshwordsplit' is equivalent to `-x -o shwordsplit'.

 Options may also be specified by name in GNU long option style, `--option-name'. When

 this is done, `-' characters in the option name are permitted: they are translated into

 `_', and thus ignored. So, for example, `zsh --sh-word-split' invokes zsh with the

 SH_WORD_SPLIT option turned on. Like other option syntaxes, options can be turned off by

 replacing the initial `-' with a `+'; thus `+-sh-word-split' is equivalent to

 `--no-sh-word-split'. Unlike other option syntaxes, GNU-style long options cannot be

 stacked with any other options, so for example `-x-shwordsplit' is an error, rather than

 being treated like `-x --shwordsplit'.

 The special GNU-style option `--version' is handled; it sends to standard output the

 shell's version information, then exits successfully. `--help' is also handled; it sends

 to standard output a list of options that can be used when invoking the shell, then exits

 successfully.

 Option processing may be finished, allowing following arguments that start with `-' or `+'

 to be treated as normal arguments, in two ways. Firstly, a lone `-' (or `+') as an argu?

 ment by itself ends option processing. Secondly, a special option `--' (or `+-'), which

 may be specified on its own (which is the standard POSIX usage) or may be stacked with

 preceding options (so `-x-' is equivalent to `-x --'). Options are not permitted to be

 stacked after `--' (so `-x-f' is an error), but note the GNU-style option form discussed

 above, where `--shwordsplit' is permitted and does not end option processing.

 Except when the sh/ksh emulation single-letter options are in effect, the option `-b' (or

 `+b') ends option processing. `-b' is like `--', except that further single-letter op?

 tions can be stacked after the `-b' and will take effect as normal.

COMPATIBILITY

 Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more pre?

 cisely, it looks at the first letter of the name by which it was invoked, excluding any

 initial `r' (assumed to stand for `restricted'), and if that is `b', `s' or `k' it will

 emulate sh or ksh. Furthermore, if invoked as su (which happens on certain systems when

 the shell is executed by the su command), the shell will try to find an alternative name

 from the SHELL environment variable and perform emulation based on that.

 In sh and ksh compatibility modes the following parameters are not special and not ini?

 tialized by the shell: ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, Page 5/9

 manpath, path, prompt, PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.

 The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile

 followed by $HOME/.profile. If the ENV environment variable is set on invocation, $ENV is

 sourced after the profile scripts. The value of ENV is subjected to parameter expansion,

 command substitution, and arithmetic expansion before being interpreted as a pathname.

 Note that the PRIVILEGED option also affects the execution of startup files.

 The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,

 NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERO, GLOB_SUBST,

NO_GLOBAL_EXPORT,

 NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MULTIOS, NO_NOMATCH, NO_NOTIFY,

 POSIX_BUILTINS, NO_PROMPT_PERCENT, RM_STAR_SILENT, SH_FILE_EXPANSION, SH_GLOB, SH_OP?

 TION_LETTERS, SH_WORD_SPLIT. Additionally the BSD_ECHO and IGNORE_BRACES options are set

 if zsh is invoked as sh. Also, the KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG,

 PROMPT_SUBST and SINGLE_LINE_ZLE options are set if zsh is invoked as ksh.

RESTRICTED SHELL

 When the basename of the command used to invoke zsh starts with the letter `r' or the `-r'

 command line option is supplied at invocation, the shell becomes restricted. Emulation

 mode is determined after stripping the letter `r' from the invocation name. The following

 are disabled in restricted mode:

 ? changing directories with the cd builtin

 ? changing or unsetting the EGID, EUID, GID, HISTFILE, HISTSIZE, IFS, LD_AOUT_LI?

 BRARY_PATH, LD_AOUT_PRELOAD, LD_LIBRARY_PATH, LD_PRELOAD, MODULE_PATH, module_path,

 PATH, path, SHELL, UID and USERNAME parameters

 ? specifying command names containing /

 ? specifying command pathnames using hash

 ? redirecting output to files

 ? using the exec builtin command to replace the shell with another command

 ? using jobs -Z to overwrite the shell process' argument and environment space

 ? using the ARGV0 parameter to override argv[0] for external commands

 ? turning off restricted mode with set +r or unsetopt RESTRICTED

 These restrictions are enforced after processing the startup files. The startup files

 should set up PATH to point to a directory of commands which can be safely invoked in the

 restricted environment. They may also add further restrictions by disabling selected Page 6/9

 builtins.

 Restricted mode can also be activated any time by setting the RESTRICTED option. This im?

 mediately enables all the restrictions described above even if the shell still has not

 processed all startup files.

 A shell Restricted Mode is an outdated way to restrict what users may do: modern systems

 have better, safer and more reliable ways to confine user actions, such as chroot jails,

 containers and zones.

 A restricted shell is very difficult to implement safely. The feature may be removed in a

 future version of zsh.

 It is important to realise that the restrictions only apply to the shell, not to the com?

 mands it runs (except for some shell builtins). While a restricted shell can only run the

 restricted list of commands accessible via the predefined `PATH' variable, it does not

 prevent those commands from running any other command.

 As an example, if `env' is among the list of allowed commands, then it allows the user to

 run any command as `env' is not a shell builtin command and can run arbitrary executables.

 So when implementing a restricted shell framework it is important to be fully aware of

 what actions each of the allowed commands or features (which may be regarded as modules)

 can perform.

 Many commands can have their behaviour affected by environment variables. Except for the

 few listed above, zsh does not restrict the setting of environment variables.

 If a `perl', `python', `bash', or other general purpose interpreted script it treated as a

 restricted command, the user can work around the restriction by setting specially crafted

 `PERL5LIB', `PYTHONPATH', `BASHENV' (etc.) environment variables. On GNU systems, any com?

 mand can be made to run arbitrary code when performing character set conversion (including

 zsh itself) by setting a `GCONV_PATH' environment variable. Those are only a few exam?

 ples.

 Bear in mind that, contrary to some other shells, `readonly' is not a security feature in

 zsh as it can be undone and so cannot be used to mitigate the above.

 A restricted shell only works if the allowed commands are few and carefully written so as

 not to grant more access to users than intended. It is also important to restrict what

 zsh module the user may load as some of them, such as `zsh/system', `zsh/mapfile' and

 `zsh/files', allow bypassing most of the restrictions.

STARTUP/SHUTDOWN FILES Page 7/9

 Commands are first read from /etc/zsh/zshenv; this cannot be overridden. Subsequent be?

 haviour is modified by the RCS and GLOBAL_RCS options; the former affects all startup

 files, while the second only affects global startup files (those shown here with an path

 starting with a /). If one of the options is unset at any point, any subsequent startup

 file(s) of the corresponding type will not be read. It is also possible for a file in

 $ZDOTDIR to re-enable GLOBAL_RCS. Both RCS and GLOBAL_RCS are set by default.

 Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are

 read from /etc/zsh/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interac?

 tive, commands are read from /etc/zsh/zshrc and then $ZDOTDIR/.zshrc. Finally, if the

 shell is a login shell, /etc/zsh/zlogin and $ZDOTDIR/.zlogin are read.

 When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zsh/zlogout are read.

 This happens with either an explicit exit via the exit or logout commands, or an implicit

 exit by reading end-of-file from the terminal. However, if the shell terminates due to

 exec'ing another process, the logout files are not read. These are also affected by the

 RCS and GLOBAL_RCS options. Note also that the RCS option affects the saving of history

 files, i.e. if RCS is unset when the shell exits, no history file will be saved.

 If ZDOTDIR is unset, HOME is used instead. Files listed above as being in /etc may be in

 another directory, depending on the installation.

 As /etc/zsh/zshenv is run for all instances of zsh, it is important that it be kept as

 small as possible. In particular, it is a good idea to put code that does not need to be

 run for every single shell behind a test of the form `if [[-o rcs]]; then ...' so that

 it will not be executed when zsh is invoked with the `-f' option.

 Any of these files may be pre-compiled with the zcompile builtin command (see zsh?

 builtins(1)). If a compiled file exists (named for the original file plus the .zwc exten?

 sion) and it is newer than the original file, the compiled file will be used instead.

FILES

 $ZDOTDIR/.zshenv

 $ZDOTDIR/.zprofile

 $ZDOTDIR/.zshrc

 $ZDOTDIR/.zlogin

 $ZDOTDIR/.zlogout

 ${TMPPREFIX}* (default is /tmp/zsh*)

 /etc/zsh/zshenv Page 8/9

 /etc/zsh/zprofile

 /etc/zsh/zshrc

 /etc/zsh/zlogin

 /etc/zsh/zlogout (installation-specific - /etc is the default)

SEE ALSO

 sh(1), csh(1), tcsh(1), rc(1), bash(1), ksh(1), zshall(1), zshbuiltins(1), zshcalsys(1),

 zshcompwid(1), zshcompsys(1), zshcompctl(1), zshcontrib(1), zshexpn(1), zshmisc(1), zsh?

 modules(1), zshoptions(1), zshparam(1), zshroadmap(1), zshtcpsys(1), zshzftpsys(1), zsh?

 zle(1)

 IEEE Standard for information Technology - Portable Operating System Interface (POSIX) -

 Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN 1-55937-255-9.

zsh 5.8.1 February 12, 2022 ZSH(1)

Page 9/9

