
Rocky Enterprise Linux 9.2 Manual Pages on command 'xprop.1'

$ man xprop.1

XPROP(1) General Commands Manual XPROP(1)

NAME

 xprop - property displayer for X

SYNOPSIS

 xprop [-help] [-grammar] [-id id] [-root] [-name name] [-frame] [-font font] [-display

 display] [-len n] [-notype] [-fs file] [-remove property-name] [-set property-name value]

 [-spy] [-version] [-f atom format [dformat]]* [format [dformat] atom]*

SUMMARY

 The xprop utility is for displaying window and font properties in an X server. One window

 or font is selected using the command line arguments or possibly in the case of a window,

 by clicking on the desired window. A list of properties is then given, possibly with for?

 matting information.

OPTIONS

 -help Print out a summary of command line options.

 -grammar

 Print out a detailed grammar for all command line options.

 -id id This argument allows the user to select window id on the command line rather than

 using the pointer to select the target window. This is very useful in debugging X

 applications where the target window is not mapped to the screen or where the use

 of the pointer might be impossible or interfere with the application.

 -name name

 This argument allows the user to specify that the window named name is the target

 window on the command line rather than using the pointer to select the target win? Page 1/7

 dow.

 -font font

 This argument allows the user to specify that the properties of font font should

 be displayed.

 -root This argument specifies that X's root window is the target window. This is useful

 in situations where the root window is completely obscured.

 -display display

 This argument allows you to specify the server to connect to; see X(7).

 -len n Specifies that at most n bytes of any property should be read or displayed.

 -notype Specifies that the type of each property should not be displayed.

 -fs file

 Specifies that file file should be used as a source of more formats for proper?

 ties.

 -frame Specifies that when selecting a window by hand (i.e. if none of -name, -root, or

 -id are given), look at the window manager frame (if any) instead of looking for

 the client window.

 -remove property-name

 Specifies the name of a property to be removed from the indicated window.

 -set property-name value

 Specifies the name of a property and a property value, to be set on the indicated

 window.

 -spy Examine window properties forever, looking for property change events.

 -version

 Print program version information and exit.

 -f name format [dformat]

 Specifies that the format for name should be format and that the dformat for name

 should be dformat. If dformat is missing, " = $0+\n" is assumed.

DESCRIPTION

 For each of these properties, its value on the selected window or font is printed using

 the supplied formatting information if any. If no formatting information is supplied, in?

 ternal defaults are used. If a property is not defined on the selected window or font,

 "not defined" is printed as the value for that property. If no property list is given,

 all the properties possessed by the selected window or font are printed. Page 2/7

 A window may be selected in one of four ways. First, if the desired window is the root

 window, the -root argument may be used. If the desired window is not the root window, it

 may be selected in two ways on the command line, either by id number such as might be ob?

 tained from xwininfo, or by name if the window possesses a name. The -id argument selects

 a window by id number in either decimal or hex (must start with 0x) while the -name argu?

 ment selects a window by name.

 The last way to select a window does not involve the command line at all. If none of

 -font, -id, -name, and -root are specified, a crosshairs cursor is displayed and the user

 is allowed to choose any visible window by pressing any pointer button in the desired win?

 dow. If it is desired to display properties of a font as opposed to a window, the -font

 argument must be used.

 Other than the above four arguments and the -help argument for obtaining help, and the

 -grammar argument for listing the full grammar for the command line, all the other command

 line arguments are used in specifying both the format of the properties to be displayed

 and how to display them. The -len n argument specifies that at most n bytes of any given

 property will be read and displayed. This is useful for example when displaying the cut

 buffer on the root window which could run to several pages if displayed in full.

 Normally each property name is displayed by printing first the property name then its type

 (if it has one) in parentheses followed by its value. The -notype argument specifies that

 property types should not be displayed. The -fs argument is used to specify a file con?

 taining a list of formats for properties while the -f argument is used to specify the for?

 mat for one property.

 The formatting information for a property actually consists of two parts, a format and a

 dformat. The format specifies the actual formatting of the property (i.e., is it made up

 of words, bytes, or longs?, etc.) while the dformat specifies how the property should be

 displayed.

 The following paragraphs describe how to construct formats and dformats. However, for the

 vast majority of users and uses, this should not be necessary as the built in defaults

 contain the formats and dformats necessary to display all the standard properties. It

 should only be necessary to specify formats and dformats if a new property is being dealt

 with or the user dislikes the standard display format. New users especially are encour?

 aged to skip this part.

 A format consists of one of 0, 8, 16, or 32 followed by a sequence of one or more format Page 3/7

 characters. The 0, 8, 16, or 32 specifies how many bits per field there are in the prop?

 erty. Zero is a special case meaning use the field size information associated with the

 property itself. (This is only needed for special cases like type INTEGER which is actu?

 ally three different types depending on the size of the fields of the property.)

 A value of 8 means that the property is a sequence of bytes while a value of 16 would mean

 that the property is a sequence of words. The difference between these two lies in the

 fact that the sequence of words will be byte swapped while the sequence of bytes will not

 be when read by a machine of the opposite byte order of the machine that originally wrote

 the property. For more information on how properties are formatted and stored, consult

 the Xlib manual.

 Once the size of the fields has been specified, it is necessary to specify the type of

 each field (i.e., is it an integer, a string, an atom, or what?) This is done using one

 format character per field. If there are more fields in the property than format charac?

 ters supplied, the last character will be repeated as many times as necessary for the ex?

 tra fields. The format characters and their meaning are as follows:

 a The field holds an atom number. A field of this type should be of size 32.

 b The field is an boolean. A 0 means false while anything else means true.

 c The field is an unsigned number, a cardinal.

 i The field is a signed integer.

 m The field is a set of bit flags, 1 meaning on.

 o The field is an array of icons, packed as a sequence of 32 bit numbers consisting

 of the width, height and ARGB pixel values, as defined for the _NET_WM_ICON prop?

 erty in the Extended Window Manager Hints specification. A field of this type

 must be of size 32.

 s This field and the next ones until either a 0 or the end of the property represent

 a sequence of bytes. This format character is only usable with a field size of 8

 and is most often used to represent a string.

 t This field and the next ones until either a 0 or the end of the property represent

 an internationalized text string. This format character is only usable with a field

 size of 8. The string is assumed to be in an ICCCM compliant encoding and is con?

 verted to the current locale encoding before being output.

 u This field and the next ones until either a 0 or the end of the property represent

 an UTF-8 encoded unicode string. This format character is only usable with a field Page 4/7

 size of 8. If the string is found to be an invalid character, the type of encoding

 violation is printed instead, followed by the string formatted using 's'. When in

 an environment not capable of displaying UTF-8 encoded string, behaviour is identi?

 cal to 's'.

 x The field is a hex number (like 'c' but displayed in hex - most useful for display?

 ing window ids and the like)

 An example format is 32ica which is the format for a property of three fields of 32 bits

 each, the first holding a signed integer, the second an unsigned integer, and the third an

 atom.

 The format of a dformat unlike that of a format is not so rigid. The only limitations on

 a dformat is that one may not start with a letter or a dash. This is so that it can be

 distinguished from a property name or an argument. A dformat is a text string containing

 special characters instructing that various fields be printed at various points in a man?

 ner similar to the formatting string used by printf. For example, the dformat " is ($0,

 $1 \)\n" would render the POINT 3, -4 which has a format of 32ii as " is (3, -4)\n".

 Any character other than a $, ?, \, or a (in a dformat prints as itself. To print out

 one of $, ?, \, or (precede it by a \. For example, to print out a $, use \$. Several

 special backslash sequences are provided as shortcuts. \n will cause a newline to be dis?

 played while \t will cause a tab to be displayed. \o where o is an octal number will dis?

 play character number o.

 A $ followed by a number n causes field number n to be displayed. The format of the dis?

 played field depends on the formatting character used to describe it in the corresponding

 format. I.e., if a cardinal is described by 'c' it will print in decimal while if it is

 described by a 'x' it is displayed in hex.

 If the field is not present in the property (this is possible with some properties),

 <field not available> is displayed instead. $n+ will display field number n then a comma

 then field number n+1 then another comma then ... until the last field defined. If field

 n is not defined, nothing is displayed. This is useful for a property that is a list of

 values.

 A ? is used to start a conditional expression, a kind of if-then statement. ?exp(text)

 will display text if and only if exp evaluates to non-zero. This is useful for two

 things. First, it allows fields to be displayed if and only if a flag is set. And sec?

 ond, it allows a value such as a state number to be displayed as a name rather than as Page 5/7

 just a number. The syntax of exp is as follows:

 exp ::= term | term=exp | !exp

 term ::= n | $n | mn

 The ! operator is a logical ``not'', changing 0 to 1 and any non-zero value to 0. = is an

 equality operator. Note that internally all expressions are evaluated as 32 bit numbers

 so -1 is not equal to 65535. = returns 1 if the two values are equal and 0 if not. n

 represents the constant value n while $n represents the value of field number n. mn is 1

 if flag number n in the first field having format character 'm' in the corresponding for?

 mat is 1, 0 otherwise.

 Examples: ?m3(count: $3\n) displays field 3 with a label of count if and only if flag num?

 ber 3 (count starts at 0!) is on. ?$2=0(True)?!$2=0(False) displays the inverted value of

 field 2 as a boolean.

 In order to display a property, xprop needs both a format and a dformat. Before xprop

 uses its default values of a format of 32x and a dformat of " = { $0+ }\n", it searches

 several places in an attempt to find more specific formats. First, a search is made using

 the name of the property. If this fails, a search is made using the type of the property.

 This allows type STRING to be defined with one set of formats while allowing property

 WM_NAME which is of type STRING to be defined with a different format. In this way, the

 display formats for a given type can be overridden for specific properties.

 The locations searched are in order: the format if any specified with the property name

 (as in 8x WM_NAME), the formats defined by -f options in last to first order, the contents

 of the file specified by the -fs option if any, the contents of the file specified by the

 environmental variable XPROPFORMATS if any, and finally xprop's built in file of formats.

 The format of the files referred to by the -fs argument and the XPROPFORMATS variable is

 one or more lines of the following form:

 name format [dformat]

 Where name is either the name of a property or the name of a type, format is the format to

 be used with name and dformat is the dformat to be used with name. If dformat is not

 present, " = $0+\n" is assumed.

EXAMPLES

 To display the name of the root window: xprop -root WM_NAME

 To display the window manager hints for the clock: xprop -name xclock WM_HINTS

 To display the start of the cut buffer: xprop -root -len 100 CUT_BUFFER0 Page 6/7

 To display the point size of the fixed font: xprop -font fixed POINT_SIZE

 To display all the properties of window # 0x200007: xprop -id 0x200007

 To set a simple string property: xprop -root -format MY_ATOM_NAME 8s -set MY_ATOM_NAME

 "my_value"

ENVIRONMENT

 DISPLAY To get default display.

 XPROPFORMATS

 Specifies the name of a file from which additional formats are to be obtained.

SEE ALSO

 X(7), xdpyinfo(1), xwininfo(1), xdriinfo(1), glxinfo(1), xvinfo(1)

AUTHOR

 Mark Lillibridge, MIT Project Athena

X Version 11 xprop 1.2.4 XPROP(1)

Page 7/7

