
Rocky Enterprise Linux 9.2 Manual Pages on command 'xfs_repair.8'

$ man xfs_repair.8

xfs_repair(8) System Manager's Manual xfs_repair(8)

NAME

 xfs_repair - repair an XFS filesystem

SYNOPSIS

 xfs_repair [-dfLPv] [-n | -e] [-m maxmem] [-c subopt=value] [-o subopt[=value]]

 [-t interval] [-l logdev] [-r rtdev] device

 xfs_repair -V

DESCRIPTION

 xfs_repair repairs corrupt or damaged XFS filesystems (see xfs(5)). The filesystem is

 specified using the device argument which should be the device name of the disk partition

 or volume containing the filesystem. If given the name of a block device, xfs_repair will

 attempt to find the raw device associated with the specified block device and will use the

 raw device instead.

 Regardless, the filesystem to be repaired must be unmounted, otherwise, the resulting

 filesystem may be inconsistent or corrupt.

OPTIONS

 -f Specifies that the filesystem image to be processed is stored in a regular file at

 device (see the mkfs.xfs -d file option). This might happen if an image copy of a

 filesystem has been copied or written into an ordinary file. This option implies

 that any external log or realtime section is also in an ordinary file.

 -L Force Log Zeroing. Forces xfs_repair to zero the log even if it is dirty (contains

 metadata changes). When using this option the filesystem will likely appear to be

 corrupt, and can cause the loss of user files and/or data. See the DIRTY LOGS sec? Page 1/9

 tion for more information.

 -l logdev

 Specifies the device special file where the filesystem's external log resides. Only

 for those filesystems which use an external log. See the mkfs.xfs -l option, and

 refer to xfs(5) for a detailed description of the XFS log.

 -r rtdev

 Specifies the device special file where the filesystem's realtime section resides.

 Only for those filesystems which use a realtime section. See the mkfs.xfs -r op?

 tion, and refer to xfs(5) for a detailed description of the XFS realtime section.

 -n No modify mode. Specifies that xfs_repair should not modify the filesystem but

 should only scan the filesystem and indicate what repairs would have been made.

 This option cannot be used together with -e.

 -P Disable prefetching of inode and directory blocks. Use this option if you find

 xfs_repair gets stuck and stops proceeding. Interrupting a stuck xfs_repair is

 safe.

 -m maxmem

 Specifies the approximate maximum amount of memory, in megabytes, to use for

 xfs_repair. xfs_repair has its own internal block cache which will scale out up to

 the lesser of the process's virtual address limit or about 75% of the system's

 physical RAM. This option overrides these limits.

 NOTE: These memory limits are only approximate and may use more than the specified

 limit.

 -c subopt=value

 Change filesystem parameters. Refer to xfs_admin(8) for information on changing

 filesystem parameters.

 -o subopt[=value]

 Override what the program might conclude about the filesystem if left to its own

 devices.

 The suboptions supported are:

 bhash=bhashsize

 overrides the default buffer cache hash size. The total number of buffer

 cache entries are limited to 8 times this amount. The default size is set

 to use up the remainder of 75% of the system's physical RAM size. Page 2/9

 ag_stride=ags_per_concat_unit

 This creates additional processing threads to parallel process AGs that

 span multiple concat units. This can significantly reduce repair times on

 concat based filesystems.

 force_geometry

 Check the filesystem even if geometry information could not be validated.

 Geometry information can not be validated if only a single allocation

 group exists and thus we do not have a backup superblock available, or if

 there are two allocation groups and the two superblocks do not agree on

 the filesystem geometry. Only use this option if you validated the geom?

 etry yourself and know what you are doing. If In doubt run in no modify

 mode first.

 noquota

 Don't validate quota counters at all. Quotacheck will be run during the

 next mount to recalculate all values.

 -t interval

 Modify reporting interval, specified in seconds. During long runs xfs_repair out?

 puts its progress every 15 minutes. Reporting is only activated when ag_stride is

 enabled.

 -v Verbose output. May be specified multiple times to increase verbosity.

 -d Repair dangerously. Allow xfs_repair to repair an XFS filesystem mounted read only.

 This is typically done on a root filesystem from single user mode, immediately fol?

 lowed by a reboot.

 -e If any metadata corruption was repaired, the status returned is 4 instead of the

 usual 0. This option cannot be used together with -n.

 -V Prints the version number and exits.

 Checks Performed

 Inconsistencies corrected include the following:

 1. Inode and inode blockmap (addressing) checks: bad magic number in inode, bad magic

 numbers in inode blockmap blocks, extents out of order, incorrect number of records

 in inode blockmap blocks, blocks claimed that are not in a legal data area of the

 filesystem, blocks that are claimed by more than one inode.

 2. Inode allocation map checks: bad magic number in inode map blocks, inode state as Page 3/9

 indicated by map (free or in-use) inconsistent with state indicated by the inode,

 inodes referenced by the filesystem that do not appear in the inode allocation map,

 inode allocation map referencing blocks that do not appear to contain inodes.

 3. Size checks: number of blocks claimed by inode inconsistent with inode size, direc?

 tory size not block aligned, inode size not consistent with inode format.

 4. Directory checks: bad magic numbers in directory blocks, incorrect number of en?

 tries in a directory block, bad freespace information in a directory leaf block,

 entry pointing to an unallocated (free) or out of range inode, overlapping entries,

 missing or incorrect dot and dotdot entries, entries out of hashvalue order, incor?

 rect internal directory pointers, directory type not consistent with inode format

 and size.

 5. Pathname checks: files or directories not referenced by a pathname starting from

 the filesystem root, illegal pathname components.

 6. Link count checks: link counts that do not agree with the number of directory ref?

 erences to the inode.

 7. Freemap checks: blocks claimed free by the freemap but also claimed by an inode,

 blocks unclaimed by any inode but not appearing in the freemap.

 8. Super Block checks: total free block and/or free i-node count incorrect, filesystem

 geometry inconsistent, secondary and primary superblocks contradictory.

 Orphaned files and directories (allocated, in-use but unreferenced) are reconnected by

 placing them in the lost+found directory. The name assigned is the inode number.

 Disk Errors

 xfs_repair aborts on most disk I/O errors. Therefore, if you are trying to repair a

 filesystem that was damaged due to a disk drive failure, steps should be taken to ensure

 that all blocks in the filesystem are readable and writable before attempting to use

 xfs_repair to repair the filesystem. A possible method is using dd(8) to copy the data

 onto a good disk.

 lost+found

 The directory lost+found does not have to already exist in the filesystem being repaired.

 If the directory does not exist, it is automatically created if required. If it already

 exists, it will be checked for consistency and if valid will be used for additional or?

 phaned files. Invalid lost+found directories are removed and recreated. Existing files in

 a valid lost+found are not removed or renamed. Page 4/9

 Corrupted Superblocks

 XFS has both primary and secondary superblocks. xfs_repair uses information in the pri?

 mary superblock to automatically find and validate the primary superblock against the sec?

 ondary superblocks before proceeding. Should the primary be too corrupted to be useful in

 locating the secondary superblocks, the program scans the filesystem until it finds and

 validates some secondary superblocks. At that point, it generates a primary superblock.

 Quotas

 If quotas are in use, it is possible that xfs_repair will clear some or all of the

 filesystem quota information. If so, the program issues a warning just before it termi?

 nates. If all quota information is lost, quotas are disabled and the program issues a

 warning to that effect.

 Note that xfs_repair does not check the validity of quota limits. It is recommended that

 you check the quota limit information manually after xfs_repair. Also, space usage infor?

 mation is automatically regenerated the next time the filesystem is mounted with quotas

 turned on, so the next quota mount of the filesystem may take some time.

DIAGNOSTICS

 xfs_repair issues informative messages as it proceeds indicating what it has found that is

 abnormal or any corrective action that it has taken. Most of the messages are completely

 understandable only to those who are knowledgeable about the structure of the filesystem.

 Some of the more common messages are explained here. Note that the language of the mes?

 sages is slightly different if xfs_repair is run in no-modify mode because the program is

 not changing anything on disk. No-modify mode indicates what it would do to repair the

 filesystem if run without the no-modify flag.

 disconnected inode ino, moving to lost+found

 An inode numbered ino was not connected to the filesystem directory tree and was

 reconnected to the lost+found directory. The inode is assigned the name of its in?

 ode number (ino). If a lost+found directory does not exist, it is automatically

 created.

 disconnected dir inode ino, moving to lost+found

 As above only the inode is a directory inode. If a directory inode is attached to

 lost+found, all of its children (if any) stay attached to the directory and there?

 fore get automatically reconnected when the directory is reconnected.

 imap claims in-use inode ino is free, correcting imap Page 5/9

 The inode allocation map thinks that inode ino is free whereas examination of the

 inode indicates that the inode may be in use (although it may be disconnected).

 The program updates the inode allocation map.

 imap claims free inode ino is in use, correcting imap

 The inode allocation map thinks that inode ino is in use whereas examination of the

 inode indicates that the inode is not in use and therefore is free. The program

 updates the inode allocation map.

 resetting inode ino nlinks from x to y

 The program detected a mismatch between the number of valid directory entries ref?

 erencing inode ino and the number of references recorded in the inode and corrected

 the the number in the inode.

 fork-type fork in ino ino claims used block bno

 Inode ino claims a block bno that is used (claimed) by either another inode or the

 filesystem itself for metadata storage. The fork-type is either data or attr indi?

 cating whether the problem lies in the portion of the inode that tracks regular

 data or the portion of the inode that stores XFS attributes. If the inode is a

 real-time (rt) inode, the message says so. Any inode that claims blocks used by

 the filesystem is deleted. If two or more inodes claim the same block, they are

 both deleted.

 fork-type fork in ino ino claims dup extent ...

 Inode ino claims a block in an extent known to be claimed more than once. The off?

 set in the inode, start and length of the extent is given. The message is slightly

 different if the inode is a real-time (rt) inode and the extent is therefore a

 real-time (rt) extent.

 inode ino - bad extent ...

 An extent record in the blockmap of inode ino claims blocks that are out of the le?

 gal range of the filesystem. The message supplies the start, end, and file offset

 of the extent. The message is slightly different if the extent is a real-time (rt)

 extent.

 bad fork-type fork in inode ino

 There was something structurally wrong or inconsistent with the data structures

 that map offsets to filesystem blocks.

 cleared inode ino Page 6/9

 There was something wrong with the inode that was uncorrectable so the program

 freed the inode. This usually happens because the inode claims blocks that are

 used by something else or the inode itself is badly corrupted. Typically, this mes?

 sage is preceded by one or more messages indicating why the inode needed to be

 cleared.

 bad attribute fork in inode ino, clearing attr fork

 There was something wrong with the portion of the inode that stores XFS attributes

 (the attribute fork) so the program reset the attribute fork. As a result of this,

 all attributes on that inode are lost.

 correcting nextents for inode ino, was x - counted y

 The program found that the number of extents used to store the data in the inode is

 wrong and corrected the number. The message refers to nextents if the count is

 wrong on the number of extents used to store attribute information.

 entry name in dir dir_ino not consistent with .. value (xxxx) in dir ino ino, junking en?

 try name in directory inode dir_ino

 The entry name in directory inode dir_ino references a directory inode ino. How?

 ever, the .. entry in directory ino does not point back to directory dir_ino, so

 the program deletes the entry name in directory inode dir_ino. If the directory

 inode ino winds up becoming a disconnected inode as a result of this, it is moved

 to lost+found later.

 entry name in dir dir_ino references already connected dir ino ino, junking entry name in

 directory inode dir_ino

 The entry name in directory inode dir_ino points to a directory inode ino that is

 known to be a child of another directory. Therefore, the entry is invalid and is

 deleted. This message refers to an entry in a small directory. If this were a

 large directory, the last phrase would read "will clear entry".

 entry references free inode ino in directory dir_ino, will clear entry

 An entry in directory inode dir_ino references an inode ino that is known to be

 free. The entry is therefore invalid and is deleted. This message refers to a

 large directory. If the directory were small, the message would read "junking en?

 try ...".

EXIT STATUS

 xfs_repair -n (no modify mode) will return a status of 1 if filesystem corruption was de? Page 7/9

 tected and 0 if no filesystem corruption was detected. xfs_repair run without the -n op?

 tion will always return a status code of 0 if it completes without problems, unless the

 flag -e is used. If it is used, then status 4 is reported when any issue with the filesys?

 tem was found, but could be fixed. If a runtime error is encountered during operation, it

 will return a status of 1. In this case, xfs_repair should be restarted. If xfs_repair is

 unable to proceed due to a dirty log, it will return a status of 2. See below.

DIRTY LOGS

 Due to the design of the XFS log, a dirty log can only be replayed by the kernel, on a ma?

 chine having the same CPU architecture as the machine which was writing to the log.

 xfs_repair cannot replay a dirty log and will exit with a status code of 2 when it detects

 a dirty log.

 In this situation, the log can be replayed by mounting and immediately unmounting the

 filesystem on the same class of machine that crashed. Please make sure that the machine's

 hardware is reliable before replaying to avoid compounding the problems.

 If mounting fails, the log can be erased by running xfs_repair with the -L option. All

 metadata updates in progress at the time of the crash will be lost, which may cause sig?

 nificant filesystem damage. This should only be used as a last resort.

BUGS

 The filesystem to be checked and repaired must have been unmounted cleanly using normal

 system administration procedures (the umount(8) command or system shutdown), not as a re?

 sult of a crash or system reset. If the filesystem has not been unmounted cleanly, mount

 it and unmount it cleanly before running xfs_repair.

 xfs_repair does not do a thorough job on XFS extended attributes. The structure of the

 attribute fork will be consistent, but only the contents of attribute forks that will fit

 into an inode are checked. This limitation will be fixed in the future.

 The no-modify mode (-n option) is not completely accurate. It does not catch inconsisten?

 cies in the freespace and inode maps, particularly lost blocks or subtly corrupted maps

 (trees).

 The no-modify mode can generate repeated warnings about the same problems because it can?

 not fix the problems as they are encountered.

 If a filesystem fails to be repaired, a metadump image can be generated with xfs_metad?

 ump(8) and be sent to an XFS maintainer to be analysed and xfs_repair fixed and/or im?

 proved. Page 8/9

SEE ALSO

 dd(1), mkfs.xfs(8), umount(8), xfs_admin(8), xfs_metadump(8), xfs(5).

 xfs_repair(8)

Page 9/9

