
Rocky Enterprise Linux 9.2 Manual Pages on command 'x86_64-linux-gnu-ld.1'

$ man x86_64-linux-gnu-ld.1

LD(1) GNU Development Tools LD(1)

NAME

 ld - The GNU linker

SYNOPSIS

 ld [options] objfile ...

DESCRIPTION

 ld combines a number of object and archive files, relocates their data and ties up symbol

 references. Usually the last step in compiling a program is to run ld.

 ld accepts Linker Command Language files written in a superset of AT&T's Link Editor

 Command Language syntax, to provide explicit and total control over the linking process.

 This man page does not describe the command language; see the ld entry in "info" for full

 details on the command language and on other aspects of the GNU linker.

 This version of ld uses the general purpose BFD libraries to operate on object files. This

 allows ld to read, combine, and write object files in many different formats---for

 example, COFF or "a.out". Different formats may be linked together to produce any

 available kind of object file.

 Aside from its flexibility, the GNU linker is more helpful than other linkers in providing

 diagnostic information. Many linkers abandon execution immediately upon encountering an

 error; whenever possible, ld continues executing, allowing you to identify other errors

 (or, in some cases, to get an output file in spite of the error).

 The GNU linker ld is meant to cover a broad range of situations, and to be as compatible

 as possible with other linkers. As a result, you have many choices to control its

 behavior. Page 1/62

OPTIONS

 The linker supports a plethora of command-line options, but in actual practice few of them

 are used in any particular context. For instance, a frequent use of ld is to link

 standard Unix object files on a standard, supported Unix system. On such a system, to

 link a file "hello.o":

 ld -o <output> /lib/crt0.o hello.o -lc

 This tells ld to produce a file called output as the result of linking the file

 "/lib/crt0.o" with "hello.o" and the library "libc.a", which will come from the standard

 search directories. (See the discussion of the -l option below.)

 Some of the command-line options to ld may be specified at any point in the command line.

 However, options which refer to files, such as -l or -T, cause the file to be read at the

 point at which the option appears in the command line, relative to the object files and

 other file options. Repeating non-file options with a different argument will either have

 no further effect, or override prior occurrences (those further to the left on the command

 line) of that option. Options which may be meaningfully specified more than once are

 noted in the descriptions below.

 Non-option arguments are object files or archives which are to be linked together. They

 may follow, precede, or be mixed in with command-line options, except that an object file

 argument may not be placed between an option and its argument.

 Usually the linker is invoked with at least one object file, but you can specify other

 forms of binary input files using -l, -R, and the script command language. If no binary

 input files at all are specified, the linker does not produce any output, and issues the

 message No input files.

 If the linker cannot recognize the format of an object file, it will assume that it is a

 linker script. A script specified in this way augments the main linker script used for

 the link (either the default linker script or the one specified by using -T). This

 feature permits the linker to link against a file which appears to be an object or an

 archive, but actually merely defines some symbol values, or uses "INPUT" or "GROUP" to

 load other objects. Specifying a script in this way merely augments the main linker

 script, with the extra commands placed after the main script; use the -T option to replace

 the default linker script entirely, but note the effect of the "INSERT" command.

 For options whose names are a single letter, option arguments must either follow the

 option letter without intervening whitespace, or be given as separate arguments Page 2/62

 immediately following the option that requires them.

 For options whose names are multiple letters, either one dash or two can precede the

 option name; for example, -trace-symbol and --trace-symbol are equivalent. Note---there

 is one exception to this rule. Multiple letter options that start with a lower case 'o'

 can only be preceded by two dashes. This is to reduce confusion with the -o option. So

 for example -omagic sets the output file name to magic whereas --omagic sets the NMAGIC

 flag on the output.

 Arguments to multiple-letter options must either be separated from the option name by an

 equals sign, or be given as separate arguments immediately following the option that

 requires them. For example, --trace-symbol foo and --trace-symbol=foo are equivalent.

 Unique abbreviations of the names of multiple-letter options are accepted.

 Note---if the linker is being invoked indirectly, via a compiler driver (e.g. gcc) then

 all the linker command-line options should be prefixed by -Wl, (or whatever is appropriate

 for the particular compiler driver) like this:

 gcc -Wl,--start-group foo.o bar.o -Wl,--end-group

 This is important, because otherwise the compiler driver program may silently drop the

 linker options, resulting in a bad link. Confusion may also arise when passing options

 that require values through a driver, as the use of a space between option and argument

 acts as a separator, and causes the driver to pass only the option to the linker and the

 argument to the compiler. In this case, it is simplest to use the joined forms of both

 single- and multiple-letter options, such as:

 gcc foo.o bar.o -Wl,-eENTRY -Wl,-Map=a.map

 Here is a table of the generic command-line switches accepted by the GNU linker:

 @file

 Read command-line options from file. The options read are inserted in place of the

 original @file option. If file does not exist, or cannot be read, then the option

 will be treated literally, and not removed.

 Options in file are separated by whitespace. A whitespace character may be included

 in an option by surrounding the entire option in either single or double quotes. Any

 character (including a backslash) may be included by prefixing the character to be

 included with a backslash. The file may itself contain additional @file options; any

 such options will be processed recursively.

 -a keyword Page 3/62

 This option is supported for HP/UX compatibility. The keyword argument must be one of

 the strings archive, shared, or default. -aarchive is functionally equivalent to

 -Bstatic, and the other two keywords are functionally equivalent to -Bdynamic. This

 option may be used any number of times.

 --audit AUDITLIB

 Adds AUDITLIB to the "DT_AUDIT" entry of the dynamic section. AUDITLIB is not checked

 for existence, nor will it use the DT_SONAME specified in the library. If specified

 multiple times "DT_AUDIT" will contain a colon separated list of audit interfaces to

 use. If the linker finds an object with an audit entry while searching for shared

 libraries, it will add a corresponding "DT_DEPAUDIT" entry in the output file. This

 option is only meaningful on ELF platforms supporting the rtld-audit interface.

 -b input-format

 --format=input-format

 ld may be configured to support more than one kind of object file. If your ld is

 configured this way, you can use the -b option to specify the binary format for input

 object files that follow this option on the command line. Even when ld is configured

 to support alternative object formats, you don't usually need to specify this, as ld

 should be configured to expect as a default input format the most usual format on each

 machine. input-format is a text string, the name of a particular format supported by

 the BFD libraries. (You can list the available binary formats with objdump -i.)

 You may want to use this option if you are linking files with an unusual binary

 format. You can also use -b to switch formats explicitly (when linking object files

 of different formats), by including -b input-format before each group of object files

 in a particular format.

 The default format is taken from the environment variable "GNUTARGET".

 You can also define the input format from a script, using the command "TARGET";

 -c MRI-commandfile

 --mri-script=MRI-commandfile

 For compatibility with linkers produced by MRI, ld accepts script files written in an

 alternate, restricted command language, described in the MRI Compatible Script Files

 section of GNU ld documentation. Introduce MRI script files with the option -c; use

 the -T option to run linker scripts written in the general-purpose ld scripting

 language. If MRI-cmdfile does not exist, ld looks for it in the directories specified Page 4/62

 by any -L options.

 -d

 -dc

 -dp These three options are equivalent; multiple forms are supported for compatibility

 with other linkers. They assign space to common symbols even if a relocatable output

 file is specified (with -r). The script command "FORCE_COMMON_ALLOCATION" has the

 same effect.

 --depaudit AUDITLIB

 -P AUDITLIB

 Adds AUDITLIB to the "DT_DEPAUDIT" entry of the dynamic section. AUDITLIB is not

 checked for existence, nor will it use the DT_SONAME specified in the library. If

 specified multiple times "DT_DEPAUDIT" will contain a colon separated list of audit

 interfaces to use. This option is only meaningful on ELF platforms supporting the

 rtld-audit interface. The -P option is provided for Solaris compatibility.

 --enable-non-contiguous-regions

 This option avoids generating an error if an input section does not fit a matching

 output section. The linker tries to allocate the input section to subseque nt matching

 output sections, and generates an error only if no output section is large enough.

 This is useful when several non-contiguous memory regions are available and the input

 section does not require a particular one. The order in which input sections are

 evaluated does not change, for instance:

 MEMORY {

 MEM1 (rwx) : ORIGIN : 0x1000, LENGTH = 0x14

 MEM2 (rwx) : ORIGIN : 0x1000, LENGTH = 0x40

 MEM3 (rwx) : ORIGIN : 0x2000, LENGTH = 0x40

 }

 SECTIONS {

 mem1 : { *(.data.*); } > MEM1

 mem2 : { *(.data.*); } > MEM2

 mem3 : { *(.data.*); } > MEM2

 }

 with input sections:

 .data.1: size 8 Page 5/62

 .data.2: size 0x10

 .data.3: size 4

 results in .data.1 affected to mem1, and .data.2 and .data.3

 affected to mem2, even though .data.3 would fit in mem3.

 This option is incompatible with INSERT statements because it changes the way input

 sections are mapped to output sections.

 --enable-non-contiguous-regions-warnings

 This option enables warnings when "--enable-non-contiguous-regions" allows possibly

 unexpected matches in sections mapping, potentially leading to silently discarding a

 section instead of failing because it does not fit any output region.

 -e entry

 --entry=entry

 Use entry as the explicit symbol for beginning execution of your program, rather than

 the default entry point. If there is no symbol named entry, the linker will try to

 parse entry as a number, and use that as the entry address (the number will be

 interpreted in base 10; you may use a leading 0x for base 16, or a leading 0 for base

 8).

 --exclude-libs lib,lib,...

 Specifies a list of archive libraries from which symbols should not be automatically

 exported. The library names may be delimited by commas or colons. Specifying

 "--exclude-libs ALL" excludes symbols in all archive libraries from automatic export.

 This option is available only for the i386 PE targeted port of the linker and for ELF

 targeted ports. For i386 PE, symbols explicitly listed in a .def file are still

 exported, regardless of this option. For ELF targeted ports, symbols affected by this

 option will be treated as hidden.

 --exclude-modules-for-implib module,module,...

 Specifies a list of object files or archive members, from which symbols should not be

 automatically exported, but which should be copied wholesale into the import library

 being generated during the link. The module names may be delimited by commas or

 colons, and must match exactly the filenames used by ld to open the files; for archive

 members, this is simply the member name, but for object files the name listed must

 include and match precisely any path used to specify the input file on the linker's

 command-line. This option is available only for the i386 PE targeted port of the Page 6/62

 linker. Symbols explicitly listed in a .def file are still exported, regardless of

 this option.

 -E

 --export-dynamic

 --no-export-dynamic

 When creating a dynamically linked executable, using the -E option or the

 --export-dynamic option causes the linker to add all symbols to the dynamic symbol

 table. The dynamic symbol table is the set of symbols which are visible from dynamic

 objects at run time.

 If you do not use either of these options (or use the --no-export-dynamic option to

 restore the default behavior), the dynamic symbol table will normally contain only

 those symbols which are referenced by some dynamic object mentioned in the link.

 If you use "dlopen" to load a dynamic object which needs to refer back to the symbols

 defined by the program, rather than some other dynamic object, then you will probably

 need to use this option when linking the program itself.

 You can also use the dynamic list to control what symbols should be added to the

 dynamic symbol table if the output format supports it. See the description of

 --dynamic-list.

 Note that this option is specific to ELF targeted ports. PE targets support a similar

 function to export all symbols from a DLL or EXE; see the description of

 --export-all-symbols below.

 --export-dynamic-symbol=glob

 When creating a dynamically linked executable, symbols matching glob will be added to

 the dynamic symbol table. When creating a shared library, references to symbols

 matching glob will not be bound to the definitions within the shared library. This

 option is a no-op when creating a shared library and -Bsymbolic or --dynamic-list are

 not specified. This option is only meaningful on ELF platforms which support shared

 libraries.

 --export-dynamic-symbol-list=file

 Specify a --export-dynamic-symbol for each pattern in the file. The format of the

 file is the same as the version node without scope and node name. See VERSION for

 more information.

 -EB Link big-endian objects. This affects the default output format. Page 7/62

 -EL Link little-endian objects. This affects the default output format.

 -f name

 --auxiliary=name

 When creating an ELF shared object, set the internal DT_AUXILIARY field to the

 specified name. This tells the dynamic linker that the symbol table of the shared

 object should be used as an auxiliary filter on the symbol table of the shared object

 name.

 If you later link a program against this filter object, then, when you run the

 program, the dynamic linker will see the DT_AUXILIARY field. If the dynamic linker

 resolves any symbols from the filter object, it will first check whether there is a

 definition in the shared object name. If there is one, it will be used instead of the

 definition in the filter object. The shared object name need not exist. Thus the

 shared object name may be used to provide an alternative implementation of certain

 functions, perhaps for debugging or for machine-specific performance.

 This option may be specified more than once. The DT_AUXILIARY entries will be created

 in the order in which they appear on the command line.

 -F name

 --filter=name

 When creating an ELF shared object, set the internal DT_FILTER field to the specified

 name. This tells the dynamic linker that the symbol table of the shared object which

 is being created should be used as a filter on the symbol table of the shared object

 name.

 If you later link a program against this filter object, then, when you run the

 program, the dynamic linker will see the DT_FILTER field. The dynamic linker will

 resolve symbols according to the symbol table of the filter object as usual, but it

 will actually link to the definitions found in the shared object name. Thus the

 filter object can be used to select a subset of the symbols provided by the object

 name.

 Some older linkers used the -F option throughout a compilation toolchain for

 specifying object-file format for both input and output object files. The GNU linker

 uses other mechanisms for this purpose: the -b, --format, --oformat options, the

 "TARGET" command in linker scripts, and the "GNUTARGET" environment variable. The GNU

 linker will ignore the -F option when not creating an ELF shared object. Page 8/62

 -fini=name

 When creating an ELF executable or shared object, call NAME when the executable or

 shared object is unloaded, by setting DT_FINI to the address of the function. By

 default, the linker uses "_fini" as the function to call.

 -g Ignored. Provided for compatibility with other tools.

 -G value

 --gpsize=value

 Set the maximum size of objects to be optimized using the GP register to size. This

 is only meaningful for object file formats such as MIPS ELF that support putting large

 and small objects into different sections. This is ignored for other object file

 formats.

 -h name

 -soname=name

 When creating an ELF shared object, set the internal DT_SONAME field to the specified

 name. When an executable is linked with a shared object which has a DT_SONAME field,

 then when the executable is run the dynamic linker will attempt to load the shared

 object specified by the DT_SONAME field rather than using the file name given to the

 linker.

 -i Perform an incremental link (same as option -r).

 -init=name

 When creating an ELF executable or shared object, call NAME when the executable or

 shared object is loaded, by setting DT_INIT to the address of the function. By

 default, the linker uses "_init" as the function to call.

 -l namespec

 --library=namespec

 Add the archive or object file specified by namespec to the list of files to link.

 This option may be used any number of times. If namespec is of the form :filename, ld

 will search the library path for a file called filename, otherwise it will search the

 library path for a file called libnamespec.a.

 On systems which support shared libraries, ld may also search for files other than

 libnamespec.a. Specifically, on ELF and SunOS systems, ld will search a directory for

 a library called libnamespec.so before searching for one called libnamespec.a. (By

 convention, a ".so" extension indicates a shared library.) Note that this behavior Page 9/62

 does not apply to :filename, which always specifies a file called filename.

 The linker will search an archive only once, at the location where it is specified on

 the command line. If the archive defines a symbol which was undefined in some object

 which appeared before the archive on the command line, the linker will include the

 appropriate file(s) from the archive. However, an undefined symbol in an object

 appearing later on the command line will not cause the linker to search the archive

 again.

 See the -(option for a way to force the linker to search archives multiple times.

 You may list the same archive multiple times on the command line.

 This type of archive searching is standard for Unix linkers. However, if you are

 using ld on AIX, note that it is different from the behaviour of the AIX linker.

 -L searchdir

 --library-path=searchdir

 Add path searchdir to the list of paths that ld will search for archive libraries and

 ld control scripts. You may use this option any number of times. The directories are

 searched in the order in which they are specified on the command line. Directories

 specified on the command line are searched before the default directories. All -L

 options apply to all -l options, regardless of the order in which the options appear.

 -L options do not affect how ld searches for a linker script unless -T option is

 specified.

 If searchdir begins with "=" or $SYSROOT, then this prefix will be replaced by the

 sysroot prefix, controlled by the --sysroot option, or specified when the linker is

 configured.

 The default set of paths searched (without being specified with -L) depends on which

 emulation mode ld is using, and in some cases also on how it was configured.

 The paths can also be specified in a link script with the "SEARCH_DIR" command.

 Directories specified this way are searched at the point in which the linker script

 appears in the command line.

 -m emulation

 Emulate the emulation linker. You can list the available emulations with the

 --verbose or -V options.

 If the -m option is not used, the emulation is taken from the "LDEMULATION"

 environment variable, if that is defined. Page 10/62

 Otherwise, the default emulation depends upon how the linker was configured.

 -M

 --print-map

 Print a link map to the standard output. A link map provides information about the

 link, including the following:

 ? Where object files are mapped into memory.

 ? How common symbols are allocated.

 ? All archive members included in the link, with a mention of the symbol which

 caused the archive member to be brought in.

 ? The values assigned to symbols.

 Note - symbols whose values are computed by an expression which involves a

 reference to a previous value of the same symbol may not have correct result

 displayed in the link map. This is because the linker discards intermediate

 results and only retains the final value of an expression. Under such

 circumstances the linker will display the final value enclosed by square brackets.

 Thus for example a linker script containing:

 foo = 1

 foo = foo * 4

 foo = foo + 8

 will produce the following output in the link map if the -M option is used:

 0x00000001 foo = 0x1

 [0x0000000c] foo = (foo * 0x4)

 [0x0000000c] foo = (foo + 0x8)

 See Expressions for more information about expressions in linker scripts.

 ? How GNU properties are merged.

 When the linker merges input .note.gnu.property sections into one output

 .note.gnu.property section, some properties are removed or updated. These actions

 are reported in the link map. For example:

 Removed property 0xc0000002 to merge foo.o (0x1) and bar.o (not found)

 This indicates that property 0xc0000002 is removed from output when merging

 properties in foo.o, whose property 0xc0000002 value is 0x1, and bar.o, which

 doesn't have property 0xc0000002.

 Updated property 0xc0010001 (0x1) to merge foo.o (0x1) and bar.o (0x1) Page 11/62

 This indicates that property 0xc0010001 value is updated to 0x1 in output when

 merging properties in foo.o, whose 0xc0010001 property value is 0x1, and bar.o,

 whose 0xc0010001 property value is 0x1.

 --print-map-discarded

 --no-print-map-discarded

 Print (or do not print) the list of discarded and garbage collected sections in the

 link map. Enabled by default.

 -n

 --nmagic

 Turn off page alignment of sections, and disable linking against shared libraries. If

 the output format supports Unix style magic numbers, mark the output as "NMAGIC".

 -N

 --omagic

 Set the text and data sections to be readable and writable. Also, do not page-align

 the data segment, and disable linking against shared libraries. If the output format

 supports Unix style magic numbers, mark the output as "OMAGIC". Note: Although a

 writable text section is allowed for PE-COFF targets, it does not conform to the

 format specification published by Microsoft.

 --no-omagic

 This option negates most of the effects of the -N option. It sets the text section to

 be read-only, and forces the data segment to be page-aligned. Note - this option does

 not enable linking against shared libraries. Use -Bdynamic for this.

 -o output

 --output=output

 Use output as the name for the program produced by ld; if this option is not

 specified, the name a.out is used by default. The script command "OUTPUT" can also

 specify the output file name.

 --dependency-file=depfile

 Write a dependency file to depfile. This file contains a rule suitable for "make"

 describing the output file and all the input files that were read to produce it. The

 output is similar to the compiler's output with -M -MP. Note that there is no option

 like the compiler's -MM, to exclude "system files" (which is not a well-specified

 concept in the linker, unlike "system headers" in the compiler). So the output from Page 12/62

 --dependency-file is always specific to the exact state of the installation where it

 was produced, and should not be copied into distributed makefiles without careful

 editing.

 -O level

 If level is a numeric values greater than zero ld optimizes the output. This might

 take significantly longer and therefore probably should only be enabled for the final

 binary. At the moment this option only affects ELF shared library generation. Future

 releases of the linker may make more use of this option. Also currently there is no

 difference in the linker's behaviour for different non-zero values of this option.

 Again this may change with future releases.

 -plugin name

 Involve a plugin in the linking process. The name parameter is the absolute filename

 of the plugin. Usually this parameter is automatically added by the complier, when

 using link time optimization, but users can also add their own plugins if they so

 wish.

 Note that the location of the compiler originated plugins is different from the place

 where the ar, nm and ranlib programs search for their plugins. In order for those

 commands to make use of a compiler based plugin it must first be copied into the

 ${libdir}/bfd-plugins directory. All gcc based linker plugins are backward

 compatible, so it is sufficient to just copy in the newest one.

 --push-state

 The --push-state allows one to preserve the current state of the flags which govern

 the input file handling so that they can all be restored with one corresponding

 --pop-state option.

 The option which are covered are: -Bdynamic, -Bstatic, -dn, -dy, -call_shared,

 -non_shared, -static, -N, -n, --whole-archive, --no-whole-archive, -r, -Ur,

 --copy-dt-needed-entries, --no-copy-dt-needed-entries, --as-needed, --no-as-needed,

 and -a.

 One target for this option are specifications for pkg-config. When used with the

 --libs option all possibly needed libraries are listed and then possibly linked with

 all the time. It is better to return something as follows:

 -Wl,--push-state,--as-needed -libone -libtwo -Wl,--pop-state

 --pop-state Page 13/62

 Undoes the effect of --push-state, restores the previous values of the flags governing

 input file handling.

 -q

 --emit-relocs

 Leave relocation sections and contents in fully linked executables. Post link

 analysis and optimization tools may need this information in order to perform correct

 modifications of executables. This results in larger executables.

 This option is currently only supported on ELF platforms.

 --force-dynamic

 Force the output file to have dynamic sections. This option is specific to VxWorks

 targets.

 -r

 --relocatable

 Generate relocatable output---i.e., generate an output file that can in turn serve as

 input to ld. This is often called partial linking. As a side effect, in environments

 that support standard Unix magic numbers, this option also sets the output file's

 magic number to "OMAGIC". If this option is not specified, an absolute file is

 produced. When linking C++ programs, this option will not resolve references to

 constructors; to do that, use -Ur.

 When an input file does not have the same format as the output file, partial linking

 is only supported if that input file does not contain any relocations. Different

 output formats can have further restrictions; for example some "a.out"-based formats

 do not support partial linking with input files in other formats at all.

 This option does the same thing as -i.

 -R filename

 --just-symbols=filename

 Read symbol names and their addresses from filename, but do not relocate it or include

 it in the output. This allows your output file to refer symbolically to absolute

 locations of memory defined in other programs. You may use this option more than

 once.

 For compatibility with other ELF linkers, if the -R option is followed by a directory

 name, rather than a file name, it is treated as the -rpath option.

 -s Page 14/62

 --strip-all

 Omit all symbol information from the output file.

 -S

 --strip-debug

 Omit debugger symbol information (but not all symbols) from the output file.

 --strip-discarded

 --no-strip-discarded

 Omit (or do not omit) global symbols defined in discarded sections. Enabled by

 default.

 -t

 --trace

 Print the names of the input files as ld processes them. If -t is given twice then

 members within archives are also printed. -t output is useful to generate a list of

 all the object files and scripts involved in linking, for example, when packaging

 files for a linker bug report.

 -T scriptfile

 --script=scriptfile

 Use scriptfile as the linker script. This script replaces ld's default linker script

 (rather than adding to it), so commandfile must specify everything necessary to

 describe the output file. If scriptfile does not exist in the current directory,

 "ld" looks for it in the directories specified by any preceding -L options. Multiple

 -T options accumulate.

 -dT scriptfile

 --default-script=scriptfile

 Use scriptfile as the default linker script.

 This option is similar to the --script option except that processing of the script is

 delayed until after the rest of the command line has been processed. This allows

 options placed after the --default-script option on the command line to affect the

 behaviour of the linker script, which can be important when the linker command line

 cannot be directly controlled by the user. (eg because the command line is being

 constructed by another tool, such as gcc).

 -u symbol

 --undefined=symbol Page 15/62

 Force symbol to be entered in the output file as an undefined symbol. Doing this may,

 for example, trigger linking of additional modules from standard libraries. -u may be

 repeated with different option arguments to enter additional undefined symbols. This

 option is equivalent to the "EXTERN" linker script command.

 If this option is being used to force additional modules to be pulled into the link,

 and if it is an error for the symbol to remain undefined, then the option

 --require-defined should be used instead.

 --require-defined=symbol

 Require that symbol is defined in the output file. This option is the same as option

 --undefined except that if symbol is not defined in the output file then the linker

 will issue an error and exit. The same effect can be achieved in a linker script by

 using "EXTERN", "ASSERT" and "DEFINED" together. This option can be used multiple

 times to require additional symbols.

 -Ur For anything other than C++ programs, this option is equivalent to -r: it generates

 relocatable output---i.e., an output file that can in turn serve as input to ld. When

 linking C++ programs, -Ur does resolve references to constructors, unlike -r. It does

 not work to use -Ur on files that were themselves linked with -Ur; once the

 constructor table has been built, it cannot be added to. Use -Ur only for the last

 partial link, and -r for the others.

 --orphan-handling=MODE

 Control how orphan sections are handled. An orphan section is one not specifically

 mentioned in a linker script.

 MODE can have any of the following values:

 "place"

 Orphan sections are placed into a suitable output section following the strategy

 described in Orphan Sections. The option --unique also affects how sections are

 placed.

 "discard"

 All orphan sections are discarded, by placing them in the /DISCARD/ section.

 "warn"

 The linker will place the orphan section as for "place" and also issue a warning.

 "error"

 The linker will exit with an error if any orphan section is found. Page 16/62

 The default if --orphan-handling is not given is "place".

 --unique[=SECTION]

 Creates a separate output section for every input section matching SECTION, or if the

 optional wildcard SECTION argument is missing, for every orphan input section. An

 orphan section is one not specifically mentioned in a linker script. You may use this

 option multiple times on the command line; It prevents the normal merging of input

 sections with the same name, overriding output section assignments in a linker script.

 -v

 --version

 -V Display the version number for ld. The -V option also lists the supported emulations.

 -x

 --discard-all

 Delete all local symbols.

 -X

 --discard-locals

 Delete all temporary local symbols. (These symbols start with system-specific local

 label prefixes, typically .L for ELF systems or L for traditional a.out systems.)

 -y symbol

 --trace-symbol=symbol

 Print the name of each linked file in which symbol appears. This option may be given

 any number of times. On many systems it is necessary to prepend an underscore.

 This option is useful when you have an undefined symbol in your link but don't know

 where the reference is coming from.

 -Y path

 Add path to the default library search path. This option exists for Solaris

 compatibility.

 -z keyword

 The recognized keywords are:

 bndplt

 Always generate BND prefix in PLT entries. Supported for Linux/x86_64.

 call-nop=prefix-addr

 call-nop=suffix-nop

 call-nop=prefix-byte Page 17/62

 call-nop=suffix-byte

 Specify the 1-byte "NOP" padding when transforming indirect call to a locally

 defined function, foo, via its GOT slot. call-nop=prefix-addr generates "0x67

 call foo". call-nop=suffix-nop generates "call foo 0x90". call-nop=prefix-byte

 generates "byte call foo". call-nop=suffix-byte generates "call foo byte".

 Supported for i386 and x86_64.

 cet-report=none

 cet-report=warning

 cet-report=error

 Specify how to report the missing GNU_PROPERTY_X86_FEATURE_1_IBT and

 GNU_PROPERTY_X86_FEATURE_1_SHSTK properties in input .note.gnu.property section.

 cet-report=none, which is the default, will make the linker not report missing

 properties in input files. cet-report=warning will make the linker issue a

 warning for missing properties in input files. cet-report=error will make the

 linker issue an error for missing properties in input files. Note that ibt will

 turn off the missing GNU_PROPERTY_X86_FEATURE_1_IBT property report and shstk will

 turn off the missing GNU_PROPERTY_X86_FEATURE_1_SHSTK property report. Supported

 for Linux/i386 and Linux/x86_64.

 combreloc

 nocombreloc

 Combine multiple dynamic relocation sections and sort to improve dynamic symbol

 lookup caching. Do not do this if nocombreloc.

 common

 nocommon

 Generate common symbols with STT_COMMON type during a relocatable link. Use

 STT_OBJECT type if nocommon.

 common-page-size=value

 Set the page size most commonly used to value. Memory image layout will be

 optimized to minimize memory pages if the system is using pages of this size.

 defs

 Report unresolved symbol references from regular object files. This is done even

 if the linker is creating a non-symbolic shared library. This option is the

 inverse of -z undefs. Page 18/62

 dynamic-undefined-weak

 nodynamic-undefined-weak

 Make undefined weak symbols dynamic when building a dynamic object, if they are

 referenced from a regular object file and not forced local by symbol visibility or

 versioning. Do not make them dynamic if nodynamic-undefined-weak. If neither

 option is given, a target may default to either option being in force, or make

 some other selection of undefined weak symbols dynamic. Not all targets support

 these options.

 execstack

 Marks the object as requiring executable stack.

 global

 This option is only meaningful when building a shared object. It makes the

 symbols defined by this shared object available for symbol resolution of

 subsequently loaded libraries.

 globalaudit

 This option is only meaningful when building a dynamic executable. This option

 marks the executable as requiring global auditing by setting the "DF_1_GLOBAUDIT"

 bit in the "DT_FLAGS_1" dynamic tag. Global auditing requires that any auditing

 library defined via the --depaudit or -P command-line options be run for all

 dynamic objects loaded by the application.

 ibtplt

 Generate Intel Indirect Branch Tracking (IBT) enabled PLT entries. Supported for

 Linux/i386 and Linux/x86_64.

 ibt Generate GNU_PROPERTY_X86_FEATURE_1_IBT in .note.gnu.property section to indicate

 compatibility with IBT. This also implies ibtplt. Supported for Linux/i386 and

 Linux/x86_64.

 indirect-extern-access

 noindirect-extern-access

 Generate GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS in .note.gnu.property

 section to indicate that object file requires canonical function pointers and

 cannot be used with copy relocation. This option also implies noextern-protected-

 data and nocopyreloc. Supported for i386 and x86-64.

 noindirect-extern-access removes GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS fromPage 19/62

 .note.gnu.property section.

 initfirst

 This option is only meaningful when building a shared object. It marks the object

 so that its runtime initialization will occur before the runtime initialization of

 any other objects brought into the process at the same time. Similarly the

 runtime finalization of the object will occur after the runtime finalization of

 any other objects.

 interpose

 Specify that the dynamic loader should modify its symbol search order so that

 symbols in this shared library interpose all other shared libraries not so marked.

 unique

 nounique

 When generating a shared library or other dynamically loadable ELF object mark it

 as one that should (by default) only ever be loaded once, and only in the main

 namespace (when using "dlmopen"). This is primarily used to mark fundamental

 libraries such as libc, libpthread et al which do not usually function correctly

 unless they are the sole instances of themselves. This behaviour can be overridden

 by the "dlmopen" caller and does not apply to certain loading mechanisms (such as

 audit libraries).

 lam-u48

 Generate GNU_PROPERTY_X86_FEATURE_1_LAM_U48 in .note.gnu.property section to

 indicate compatibility with Intel LAM_U48. Supported for Linux/x86_64.

 lam-u57

 Generate GNU_PROPERTY_X86_FEATURE_1_LAM_U57 in .note.gnu.property section to

 indicate compatibility with Intel LAM_U57. Supported for Linux/x86_64.

 lam-u48-report=none

 lam-u48-report=warning

 lam-u48-report=error

 Specify how to report the missing GNU_PROPERTY_X86_FEATURE_1_LAM_U48 property in

 input .note.gnu.property section. lam-u48-report=none, which is the default, will

 make the linker not report missing properties in input files.

 lam-u48-report=warning will make the linker issue a warning for missing properties

 in input files. lam-u48-report=error will make the linker issue an error for Page 20/62

 missing properties in input files. Supported for Linux/x86_64.

 lam-u57-report=none

 lam-u57-report=warning

 lam-u57-report=error

 Specify how to report the missing GNU_PROPERTY_X86_FEATURE_1_LAM_U57 property in

 input .note.gnu.property section. lam-u57-report=none, which is the default, will

 make the linker not report missing properties in input files.

 lam-u57-report=warning will make the linker issue a warning for missing properties

 in input files. lam-u57-report=error will make the linker issue an error for

 missing properties in input files. Supported for Linux/x86_64.

 lam-report=none

 lam-report=warning

 lam-report=error

 Specify how to report the missing GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and

 GNU_PROPERTY_X86_FEATURE_1_LAM_U57 properties in input .note.gnu.property section.

 lam-report=none, which is the default, will make the linker not report missing

 properties in input files. lam-report=warning will make the linker issue a

 warning for missing properties in input files. lam-report=error will make the

 linker issue an error for missing properties in input files. Supported for

 Linux/x86_64.

 lazy

 When generating an executable or shared library, mark it to tell the dynamic

 linker to defer function call resolution to the point when the function is called

 (lazy binding), rather than at load time. Lazy binding is the default.

 loadfltr

 Specify that the object's filters be processed immediately at runtime.

 max-page-size=value

 Set the maximum memory page size supported to value.

 muldefs

 Allow multiple definitions.

 nocopyreloc

 Disable linker generated .dynbss variables used in place of variables defined in

 shared libraries. May result in dynamic text relocations. Page 21/62

 nodefaultlib

 Specify that the dynamic loader search for dependencies of this object should

 ignore any default library search paths.

 nodelete

 Specify that the object shouldn't be unloaded at runtime.

 nodlopen

 Specify that the object is not available to "dlopen".

 nodump

 Specify that the object can not be dumped by "dldump".

 noexecstack

 Marks the object as not requiring executable stack.

 noextern-protected-data

 Don't treat protected data symbols as external when building a shared library.

 This option overrides the linker backend default. It can be used to work around

 incorrect relocations against protected data symbols generated by compiler.

 Updates on protected data symbols by another module aren't visible to the

 resulting shared library. Supported for i386 and x86-64.

 noreloc-overflow

 Disable relocation overflow check. This can be used to disable relocation

 overflow check if there will be no dynamic relocation overflow at run-time.

 Supported for x86_64.

 now When generating an executable or shared library, mark it to tell the dynamic

 linker to resolve all symbols when the program is started, or when the shared

 library is loaded by dlopen, instead of deferring function call resolution to the

 point when the function is first called.

 origin

 Specify that the object requires $ORIGIN handling in paths.

 pack-relative-relocs

 nopack-relative-relocs

 Generate compact relative relocation in position-independent executable and shared

 library. It adds "DT_RELR", "DT_RELRSZ" and "DT_RELRENT" entries to the dynamic

 section. It is ignored when building position-dependent executable and

 relocatable output. nopack-relative-relocs is the default, which disables compact Page 22/62

 relative relocation. When linked against the GNU C Library, a GLIBC_ABI_DT_RELR

 symbol version dependency on the shared C Library is added to the output.

 Supported for i386 and x86-64.

 relro

 norelro

 Create an ELF "PT_GNU_RELRO" segment header in the object. This specifies a

 memory segment that should be made read-only after relocation, if supported.

 Specifying common-page-size smaller than the system page size will render this

 protection ineffective. Don't create an ELF "PT_GNU_RELRO" segment if norelro.

 report-relative-reloc

 Report dynamic relative relocations generated by linker. Supported for Linux/i386

 and Linux/x86_64.

 separate-code

 noseparate-code

 Create separate code "PT_LOAD" segment header in the object. This specifies a

 memory segment that should contain only instructions and must be in wholly

 disjoint pages from any other data. Don't create separate code "PT_LOAD" segment

 if noseparate-code is used.

 shstk

 Generate GNU_PROPERTY_X86_FEATURE_1_SHSTK in .note.gnu.property section to

 indicate compatibility with Intel Shadow Stack. Supported for Linux/i386 and

 Linux/x86_64.

 stack-size=value

 Specify a stack size for an ELF "PT_GNU_STACK" segment. Specifying zero will

 override any default non-zero sized "PT_GNU_STACK" segment creation.

 start-stop-gc

 nostart-stop-gc

 When --gc-sections is in effect, a reference from a retained section to

 "__start_SECNAME" or "__stop_SECNAME" causes all input sections named "SECNAME" to

 also be retained, if "SECNAME" is representable as a C identifier and either

 "__start_SECNAME" or "__stop_SECNAME" is synthesized by the linker. -z start-

 stop-gc disables this effect, allowing sections to be garbage collected as if the

 special synthesized symbols were not defined. -z start-stop-gc has no effect on a Page 23/62

 definition of "__start_SECNAME" or "__stop_SECNAME" in an object file or linker

 script. Such a definition will prevent the linker providing a synthesized

 "__start_SECNAME" or "__stop_SECNAME" respectively, and therefore the special

 treatment by garbage collection for those references.

 start-stop-visibility=value

 Specify the ELF symbol visibility for synthesized "__start_SECNAME" and

 "__stop_SECNAME" symbols. value must be exactly default, internal, hidden, or

 protected. If no -z start-stop-visibility option is given, protected is used for

 compatibility with historical practice. However, it's highly recommended to use

 -z start-stop-visibility=hidden in new programs and shared libraries so that these

 symbols are not exported between shared objects, which is not usually what's

 intended.

 text

 notext

 textoff

 Report an error if DT_TEXTREL is set, i.e., if the position-independent or shared

 object has dynamic relocations in read-only sections. Don't report an error if

 notext or textoff.

 undefs

 Do not report unresolved symbol references from regular object files, either when

 creating an executable, or when creating a shared library. This option is the

 inverse of -z defs.

 unique-symbol

 nounique-symbol

 Avoid duplicated local symbol names in the symbol string table. Append

 "."number"" to duplicated local symbol names if unique-symbol is used. nounique-

 symbol is the default.

 x86-64-baseline

 x86-64-v2

 x86-64-v3

 x86-64-v4

 Specify the x86-64 ISA level needed in .note.gnu.property section.

 x86-64-baseline generates "GNU_PROPERTY_X86_ISA_1_BASELINE". x86-64-v2 generates Page 24/62

 "GNU_PROPERTY_X86_ISA_1_V2". x86-64-v3 generates "GNU_PROPERTY_X86_ISA_1_V3".

 x86-64-v4 generates "GNU_PROPERTY_X86_ISA_1_V4". Supported for Linux/i386 and

 Linux/x86_64.

 Other keywords are ignored for Solaris compatibility.

 -(archives -)

 --start-group archives --end-group

 The archives should be a list of archive files. They may be either explicit file

 names, or -l options.

 The specified archives are searched repeatedly until no new undefined references are

 created. Normally, an archive is searched only once in the order that it is specified

 on the command line. If a symbol in that archive is needed to resolve an undefined

 symbol referred to by an object in an archive that appears later on the command line,

 the linker would not be able to resolve that reference. By grouping the archives,

 they will all be searched repeatedly until all possible references are resolved.

 Using this option has a significant performance cost. It is best to use it only when

 there are unavoidable circular references between two or more archives.

 --accept-unknown-input-arch

 --no-accept-unknown-input-arch

 Tells the linker to accept input files whose architecture cannot be recognised. The

 assumption is that the user knows what they are doing and deliberately wants to link

 in these unknown input files. This was the default behaviour of the linker, before

 release 2.14. The default behaviour from release 2.14 onwards is to reject such input

 files, and so the --accept-unknown-input-arch option has been added to restore the old

 behaviour.

 --as-needed

 --no-as-needed

 This option affects ELF DT_NEEDED tags for dynamic libraries mentioned on the command

 line after the --as-needed option. Normally the linker will add a DT_NEEDED tag for

 each dynamic library mentioned on the command line, regardless of whether the library

 is actually needed or not. --as-needed causes a DT_NEEDED tag to only be emitted for

 a library that at that point in the link satisfies a non-weak undefined symbol

 reference from a regular object file or, if the library is not found in the DT_NEEDED

 lists of other needed libraries, a non-weak undefined symbol reference from another Page 25/62

 needed dynamic library. Object files or libraries appearing on the command line after

 the library in question do not affect whether the library is seen as needed. This is

 similar to the rules for extraction of object files from archives. --no-as-needed

 restores the default behaviour.

 Note: On Linux based systems the --as-needed option also has an affect on the

 behaviour of the --rpath and --rpath-link options. See the description of

 --rpath-link for more details.

 --add-needed

 --no-add-needed

 These two options have been deprecated because of the similarity of their names to the

 --as-needed and --no-as-needed options. They have been replaced by

 --copy-dt-needed-entries and --no-copy-dt-needed-entries.

 -assert keyword

 This option is ignored for SunOS compatibility.

 -Bdynamic

 -dy

 -call_shared

 Link against dynamic libraries. This is only meaningful on platforms for which shared

 libraries are supported. This option is normally the default on such platforms. The

 different variants of this option are for compatibility with various systems. You may

 use this option multiple times on the command line: it affects library searching for

 -l options which follow it.

 -Bgroup

 Set the "DF_1_GROUP" flag in the "DT_FLAGS_1" entry in the dynamic section. This

 causes the runtime linker to handle lookups in this object and its dependencies to be

 performed only inside the group. --unresolved-symbols=report-all is implied. This

 option is only meaningful on ELF platforms which support shared libraries.

 -Bstatic

 -dn

 -non_shared

 -static

 Do not link against shared libraries. This is only meaningful on platforms for which

 shared libraries are supported. The different variants of this option are for Page 26/62

 compatibility with various systems. You may use this option multiple times on the

 command line: it affects library searching for -l options which follow it. This

 option also implies --unresolved-symbols=report-all. This option can be used with

 -shared. Doing so means that a shared library is being created but that all of the

 library's external references must be resolved by pulling in entries from static

 libraries.

 -Bsymbolic

 When creating a shared library, bind references to global symbols to the definition

 within the shared library, if any. Normally, it is possible for a program linked

 against a shared library to override the definition within the shared library. This

 option is only meaningful on ELF platforms which support shared libraries.

 -Bsymbolic-functions

 When creating a shared library, bind references to global function symbols to the

 definition within the shared library, if any. This option is only meaningful on ELF

 platforms which support shared libraries.

 -Bno-symbolic

 This option can cancel previously specified -Bsymbolic and -Bsymbolic-functions.

 --dynamic-list=dynamic-list-file

 Specify the name of a dynamic list file to the linker. This is typically used when

 creating shared libraries to specify a list of global symbols whose references

 shouldn't be bound to the definition within the shared library, or creating

 dynamically linked executables to specify a list of symbols which should be added to

 the symbol table in the executable. This option is only meaningful on ELF platforms

 which support shared libraries.

 The format of the dynamic list is the same as the version node without scope and node

 name. See VERSION for more information.

 --dynamic-list-data

 Include all global data symbols to the dynamic list.

 --dynamic-list-cpp-new

 Provide the builtin dynamic list for C++ operator new and delete. It is mainly useful

 for building shared libstdc++.

 --dynamic-list-cpp-typeinfo

 Provide the builtin dynamic list for C++ runtime type identification. Page 27/62

 --check-sections

 --no-check-sections

 Asks the linker not to check section addresses after they have been assigned to see if

 there are any overlaps. Normally the linker will perform this check, and if it finds

 any overlaps it will produce suitable error messages. The linker does know about, and

 does make allowances for sections in overlays. The default behaviour can be restored

 by using the command-line switch --check-sections. Section overlap is not usually

 checked for relocatable links. You can force checking in that case by using the

 --check-sections option.

 --copy-dt-needed-entries

 --no-copy-dt-needed-entries

 This option affects the treatment of dynamic libraries referred to by DT_NEEDED tags

 inside ELF dynamic libraries mentioned on the command line. Normally the linker won't

 add a DT_NEEDED tag to the output binary for each library mentioned in a DT_NEEDED tag

 in an input dynamic library. With --copy-dt-needed-entries specified on the command

 line however any dynamic libraries that follow it will have their DT_NEEDED entries

 added. The default behaviour can be restored with --no-copy-dt-needed-entries.

 This option also has an effect on the resolution of symbols in dynamic libraries.

 With --copy-dt-needed-entries dynamic libraries mentioned on the command line will be

 recursively searched, following their DT_NEEDED tags to other libraries, in order to

 resolve symbols required by the output binary. With the default setting however the

 searching of dynamic libraries that follow it will stop with the dynamic library

 itself. No DT_NEEDED links will be traversed to resolve symbols.

 --cref

 Output a cross reference table. If a linker map file is being generated, the cross

 reference table is printed to the map file. Otherwise, it is printed on the standard

 output.

 The format of the table is intentionally simple, so that it may be easily processed by

 a script if necessary. The symbols are printed out, sorted by name. For each symbol,

 a list of file names is given. If the symbol is defined, the first file listed is the

 location of the definition. If the symbol is defined as a common value then any files

 where this happens appear next. Finally any files that reference the symbol are

 listed. Page 28/62

 --ctf-variables

 --no-ctf-variables

 The CTF debuginfo format supports a section which encodes the names and types of

 variables found in the program which do not appear in any symbol table. These

 variables clearly cannot be looked up by address by conventional debuggers, so the

 space used for their types and names is usually wasted: the types are usually small

 but the names are often not. --ctf-variables causes the generation of such a section.

 The default behaviour can be restored with --no-ctf-variables.

 --ctf-share-types=method

 Adjust the method used to share types between translation units in CTF.

 share-unconflicted

 Put all types that do not have ambiguous definitions into the shared dictionary,

 where debuggers can easily access them, even if they only occur in one translation

 unit. This is the default.

 share-duplicated

 Put only types that occur in multiple translation units into the shared

 dictionary: types with only one definition go into per-translation-unit

 dictionaries. Types with ambiguous definitions in multiple translation units

 always go into per-translation-unit dictionaries. This tends to make the CTF

 larger, but may reduce the amount of CTF in the shared dictionary. For very large

 projects this may speed up opening the CTF and save memory in the CTF consumer at

 runtime.

 --no-define-common

 This option inhibits the assignment of addresses to common symbols. The script

 command "INHIBIT_COMMON_ALLOCATION" has the same effect.

 The --no-define-common option allows decoupling the decision to assign addresses to

 Common symbols from the choice of the output file type; otherwise a non-Relocatable

 output type forces assigning addresses to Common symbols. Using --no-define-common

 allows Common symbols that are referenced from a shared library to be assigned

 addresses only in the main program. This eliminates the unused duplicate space in the

 shared library, and also prevents any possible confusion over resolving to the wrong

 duplicate when there are many dynamic modules with specialized search paths for

 runtime symbol resolution. Page 29/62

 --force-group-allocation

 This option causes the linker to place section group members like normal input

 sections, and to delete the section groups. This is the default behaviour for a final

 link but this option can be used to change the behaviour of a relocatable link (-r).

 The script command "FORCE_GROUP_ALLOCATION" has the same effect.

 --defsym=symbol=expression

 Create a global symbol in the output file, containing the absolute address given by

 expression. You may use this option as many times as necessary to define multiple

 symbols in the command line. A limited form of arithmetic is supported for the

 expression in this context: you may give a hexadecimal constant or the name of an

 existing symbol, or use "+" and "-" to add or subtract hexadecimal constants or

 symbols. If you need more elaborate expressions, consider using the linker command

 language from a script. Note: there should be no white space between symbol, the

 equals sign ("="), and expression.

 The linker processes --defsym arguments and -T arguments in order, placing --defsym

 before -T will define the symbol before the linker script from -T is processed, while

 placing --defsym after -T will define the symbol after the linker script has been

 processed. This difference has consequences for expressions within the linker script

 that use the --defsym symbols, which order is correct will depend on what you are

 trying to achieve.

 --demangle[=style]

 --no-demangle

 These options control whether to demangle symbol names in error messages and other

 output. When the linker is told to demangle, it tries to present symbol names in a

 readable fashion: it strips leading underscores if they are used by the object file

 format, and converts C++ mangled symbol names into user readable names. Different

 compilers have different mangling styles. The optional demangling style argument can

 be used to choose an appropriate demangling style for your compiler. The linker will

 demangle by default unless the environment variable COLLECT_NO_DEMANGLE is set. These

 options may be used to override the default.

 -Ifile

 --dynamic-linker=file

 Set the name of the dynamic linker. This is only meaningful when generating Page 30/62

 dynamically linked ELF executables. The default dynamic linker is normally correct;

 don't use this unless you know what you are doing.

 --no-dynamic-linker

 When producing an executable file, omit the request for a dynamic linker to be used at

 load-time. This is only meaningful for ELF executables that contain dynamic

 relocations, and usually requires entry point code that is capable of processing these

 relocations.

 --embedded-relocs

 This option is similar to the --emit-relocs option except that the relocs are stored

 in a target-specific section. This option is only supported by the BFIN, CR16 and

 M68K targets.

 --disable-multiple-abs-defs

 Do not allow multiple definitions with symbols included in filename invoked by -R or

 --just-symbols

 --fatal-warnings

 --no-fatal-warnings

 Treat all warnings as errors. The default behaviour can be restored with the option

 --no-fatal-warnings.

 --force-exe-suffix

 Make sure that an output file has a .exe suffix.

 If a successfully built fully linked output file does not have a ".exe" or ".dll"

 suffix, this option forces the linker to copy the output file to one of the same name

 with a ".exe" suffix. This option is useful when using unmodified Unix makefiles on a

 Microsoft Windows host, since some versions of Windows won't run an image unless it

 ends in a ".exe" suffix.

 --gc-sections

 --no-gc-sections

 Enable garbage collection of unused input sections. It is ignored on targets that do

 not support this option. The default behaviour (of not performing this garbage

 collection) can be restored by specifying --no-gc-sections on the command line. Note

 that garbage collection for COFF and PE format targets is supported, but the

 implementation is currently considered to be experimental.

 --gc-sections decides which input sections are used by examining symbols and Page 31/62

 relocations. The section containing the entry symbol and all sections containing

 symbols undefined on the command-line will be kept, as will sections containing

 symbols referenced by dynamic objects. Note that when building shared libraries, the

 linker must assume that any visible symbol is referenced. Once this initial set of

 sections has been determined, the linker recursively marks as used any section

 referenced by their relocations. See --entry, --undefined, and --gc-keep-exported.

 This option can be set when doing a partial link (enabled with option -r). In this

 case the root of symbols kept must be explicitly specified either by one of the

 options --entry, --undefined, or --gc-keep-exported or by a "ENTRY" command in the

 linker script.

 As a GNU extension, ELF input sections marked with the "SHF_GNU_RETAIN" flag will not

 be garbage collected.

 --print-gc-sections

 --no-print-gc-sections

 List all sections removed by garbage collection. The listing is printed on stderr.

 This option is only effective if garbage collection has been enabled via the

 --gc-sections) option. The default behaviour (of not listing the sections that are

 removed) can be restored by specifying --no-print-gc-sections on the command line.

 --gc-keep-exported

 When --gc-sections is enabled, this option prevents garbage collection of unused input

 sections that contain global symbols having default or protected visibility. This

 option is intended to be used for executables where unreferenced sections would

 otherwise be garbage collected regardless of the external visibility of contained

 symbols. Note that this option has no effect when linking shared objects since it is

 already the default behaviour. This option is only supported for ELF format targets.

 --print-output-format

 Print the name of the default output format (perhaps influenced by other command-line

 options). This is the string that would appear in an "OUTPUT_FORMAT" linker script

 command.

 --print-memory-usage

 Print used size, total size and used size of memory regions created with the MEMORY

 command. This is useful on embedded targets to have a quick view of amount of free

 memory. The format of the output has one headline and one line per region. It is Page 32/62

 both human readable and easily parsable by tools. Here is an example of an output:

 Memory region Used Size Region Size %age Used

 ROM: 256 KB 1 MB 25.00%

 RAM: 32 B 2 GB 0.00%

 --help

 Print a summary of the command-line options on the standard output and exit.

 --target-help

 Print a summary of all target-specific options on the standard output and exit.

 -Map=mapfile

 Print a link map to the file mapfile. See the description of the -M option, above.

 If mapfile is just the character "-" then the map will be written to stdout.

 Specifying a directory as mapfile causes the linker map to be written as a file inside

 the directory. Normally name of the file inside the directory is computed as the

 basename of the output file with ".map" appended. If however the special character

 "%" is used then this will be replaced by the full path of the output file.

 Additionally if there are any characters after the % symbol then ".map" will no longer

 be appended.

 -o foo.exe -Map=bar [Creates ./bar]

 -o ../dir/foo.exe -Map=bar [Creates ./bar]

 -o foo.exe -Map=../dir [Creates ../dir/foo.exe.map]

 -o ../dir2/foo.exe -Map=../dir [Creates ../dir/foo.exe.map]

 -o foo.exe -Map=% [Creates ./foo.exe.map]

 -o ../dir/foo.exe -Map=% [Creates ../dir/foo.exe.map]

 -o foo.exe -Map=%.bar [Creates ./foo.exe.bar]

 -o ../dir/foo.exe -Map=%.bar [Creates ../dir/foo.exe.bar]

 -o ../dir2/foo.exe -Map=../dir/% [Creates ../dir/../dir2/foo.exe.map]

 -o ../dir2/foo.exe -Map=../dir/%.bar [Creates ../dir/../dir2/foo.exe.bar]

 It is an error to specify more than one "%" character.

 If the map file already exists then it will be overwritten by this operation.

 --no-keep-memory

 ld normally optimizes for speed over memory usage by caching the symbol tables of

 input files in memory. This option tells ld to instead optimize for memory usage, by

 rereading the symbol tables as necessary. This may be required if ld runs out of Page 33/62

 memory space while linking a large executable.

 --no-undefined

 -z defs

 Report unresolved symbol references from regular object files. This is done even if

 the linker is creating a non-symbolic shared library. The switch

 --[no-]allow-shlib-undefined controls the behaviour for reporting unresolved

 references found in shared libraries being linked in.

 The effects of this option can be reverted by using "-z undefs".

 --allow-multiple-definition

 -z muldefs

 Normally when a symbol is defined multiple times, the linker will report a fatal

 error. These options allow multiple definitions and the first definition will be used.

 --allow-shlib-undefined

 --no-allow-shlib-undefined

 Allows or disallows undefined symbols in shared libraries. This switch is similar to

 --no-undefined except that it determines the behaviour when the undefined symbols are

 in a shared library rather than a regular object file. It does not affect how

 undefined symbols in regular object files are handled.

 The default behaviour is to report errors for any undefined symbols referenced in

 shared libraries if the linker is being used to create an executable, but to allow

 them if the linker is being used to create a shared library.

 The reasons for allowing undefined symbol references in shared libraries specified at

 link time are that:

 ? A shared library specified at link time may not be the same as the one that is

 available at load time, so the symbol might actually be resolvable at load time.

 ? There are some operating systems, eg BeOS and HPPA, where undefined symbols in

 shared libraries are normal.

 The BeOS kernel for example patches shared libraries at load time to select

 whichever function is most appropriate for the current architecture. This is

 used, for example, to dynamically select an appropriate memset function.

 --error-handling-script=scriptname

 If this option is provided then the linker will invoke scriptname whenever an error is

 encountered. Currently however only two kinds of error are supported: missing symbols Page 34/62

 and missing libraries. Two arguments will be passed to script: the keyword

 "undefined-symbol" or `missing-lib" and the name of the undefined symbol or missing

 library. The intention is that the script will provide suggestions to the user as to

 where the symbol or library might be found. After the script has finished then the

 normal linker error message will be displayed.

 The availability of this option is controlled by a configure time switch, so it may

 not be present in specific implementations.

 --no-undefined-version

 Normally when a symbol has an undefined version, the linker will ignore it. This

 option disallows symbols with undefined version and a fatal error will be issued

 instead.

 --default-symver

 Create and use a default symbol version (the soname) for unversioned exported symbols.

 --default-imported-symver

 Create and use a default symbol version (the soname) for unversioned imported symbols.

 --no-warn-mismatch

 Normally ld will give an error if you try to link together input files that are

 mismatched for some reason, perhaps because they have been compiled for different

 processors or for different endiannesses. This option tells ld that it should

 silently permit such possible errors. This option should only be used with care, in

 cases when you have taken some special action that ensures that the linker errors are

 inappropriate.

 --no-warn-search-mismatch

 Normally ld will give a warning if it finds an incompatible library during a library

 search. This option silences the warning.

 --no-whole-archive

 Turn off the effect of the --whole-archive option for subsequent archive files.

 --noinhibit-exec

 Retain the executable output file whenever it is still usable. Normally, the linker

 will not produce an output file if it encounters errors during the link process; it

 exits without writing an output file when it issues any error whatsoever.

 -nostdlib

 Only search library directories explicitly specified on the command line. Library Page 35/62

 directories specified in linker scripts (including linker scripts specified on the

 command line) are ignored.

 --oformat=output-format

 ld may be configured to support more than one kind of object file. If your ld is

 configured this way, you can use the --oformat option to specify the binary format for

 the output object file. Even when ld is configured to support alternative object

 formats, you don't usually need to specify this, as ld should be configured to produce

 as a default output format the most usual format on each machine. output-format is a

 text string, the name of a particular format supported by the BFD libraries. (You can

 list the available binary formats with objdump -i.) The script command

 "OUTPUT_FORMAT" can also specify the output format, but this option overrides it.

 --out-implib file

 Create an import library in file corresponding to the executable the linker is

 generating (eg. a DLL or ELF program). This import library (which should be called

 "*.dll.a" or "*.a" for DLLs) may be used to link clients against the generated

 executable; this behaviour makes it possible to skip a separate import library

 creation step (eg. "dlltool" for DLLs). This option is only available for the i386 PE

 and ELF targetted ports of the linker.

 -pie

 --pic-executable

 Create a position independent executable. This is currently only supported on ELF

 platforms. Position independent executables are similar to shared libraries in that

 they are relocated by the dynamic linker to the virtual address the OS chooses for

 them (which can vary between invocations). Like normal dynamically linked executables

 they can be executed and symbols defined in the executable cannot be overridden by

 shared libraries.

 -no-pie

 Create a position dependent executable. This is the default.

 -qmagic

 This option is ignored for Linux compatibility.

 -Qy This option is ignored for SVR4 compatibility.

 --relax

 --no-relax Page 36/62

 An option with machine dependent effects. This option is only supported on a few

 targets.

 On some platforms the --relax option performs target specific, global optimizations

 that become possible when the linker resolves addressing in the program, such as

 relaxing address modes, synthesizing new instructions, selecting shorter version of

 current instructions, and combining constant values.

 On some platforms these link time global optimizations may make symbolic debugging of

 the resulting executable impossible. This is known to be the case for the Matsushita

 MN10200 and MN10300 family of processors.

 On platforms where the feature is supported, the option --no-relax will disable it.

 On platforms where the feature is not supported, both --relax and --no-relax are

 accepted, but ignored.

 --retain-symbols-file=filename

 Retain only the symbols listed in the file filename, discarding all others. filename

 is simply a flat file, with one symbol name per line. This option is especially

 useful in environments (such as VxWorks) where a large global symbol table is

 accumulated gradually, to conserve run-time memory.

 --retain-symbols-file does not discard undefined symbols, or symbols needed for

 relocations.

 You may only specify --retain-symbols-file once in the command line. It overrides -s

 and -S.

 -rpath=dir

 Add a directory to the runtime library search path. This is used when linking an ELF

 executable with shared objects. All -rpath arguments are concatenated and passed to

 the runtime linker, which uses them to locate shared objects at runtime.

 The -rpath option is also used when locating shared objects which are needed by shared

 objects explicitly included in the link; see the description of the -rpath-link

 option. Searching -rpath in this way is only supported by native linkers and cross

 linkers which have been configured with the --with-sysroot option.

 If -rpath is not used when linking an ELF executable, the contents of the environment

 variable "LD_RUN_PATH" will be used if it is defined.

 The -rpath option may also be used on SunOS. By default, on SunOS, the linker will

 form a runtime search path out of all the -L options it is given. If a -rpath option Page 37/62

 is used, the runtime search path will be formed exclusively using the -rpath options,

 ignoring the -L options. This can be useful when using gcc, which adds many -L

 options which may be on NFS mounted file systems.

 For compatibility with other ELF linkers, if the -R option is followed by a directory

 name, rather than a file name, it is treated as the -rpath option.

 -rpath-link=dir

 When using ELF or SunOS, one shared library may require another. This happens when an

 "ld -shared" link includes a shared library as one of the input files.

 When the linker encounters such a dependency when doing a non-shared, non-relocatable

 link, it will automatically try to locate the required shared library and include it

 in the link, if it is not included explicitly. In such a case, the -rpath-link option

 specifies the first set of directories to search. The -rpath-link option may specify

 a sequence of directory names either by specifying a list of names separated by

 colons, or by appearing multiple times.

 The tokens $ORIGIN and $LIB can appear in these search directories. They will be

 replaced by the full path to the directory containing the program or shared object in

 the case of $ORIGIN and either lib - for 32-bit binaries - or lib64 - for 64-bit

 binaries - in the case of $LIB.

 The alternative form of these tokens - ${ORIGIN} and ${LIB} can also be used. The

 token $PLATFORM is not supported.

 This option should be used with caution as it overrides the search path that may have

 been hard compiled into a shared library. In such a case it is possible to use

 unintentionally a different search path than the runtime linker would do.

 The linker uses the following search paths to locate required shared libraries:

 1. Any directories specified by -rpath-link options.

 2. Any directories specified by -rpath options. The difference between -rpath and

 -rpath-link is that directories specified by -rpath options are included in the

 executable and used at runtime, whereas the -rpath-link option is only effective

 at link time. Searching -rpath in this way is only supported by native linkers and

 cross linkers which have been configured with the --with-sysroot option.

 3. On an ELF system, for native linkers, if the -rpath and -rpath-link options were

 not used, search the contents of the environment variable "LD_RUN_PATH".

 4. On SunOS, if the -rpath option was not used, search any directories specified Page 38/62

 using -L options.

 5. For a native linker, search the contents of the environment variable

 "LD_LIBRARY_PATH".

 6. For a native ELF linker, the directories in "DT_RUNPATH" or "DT_RPATH" of a shared

 library are searched for shared libraries needed by it. The "DT_RPATH" entries are

 ignored if "DT_RUNPATH" entries exist.

 7. For a linker for a Linux system, if the file /etc/ld.so.conf exists, the list of

 directories found in that file. Note: the path to this file is prefixed with the

 "sysroot" value, if that is defined, and then any "prefix" string if the linker

 was configured with the --prefix=<path> option.

 8. For a native linker on a FreeBSD system, any directories specified by the

 "_PATH_ELF_HINTS" macro defined in the elf-hints.h header file.

 9. Any directories specified by a "SEARCH_DIR" command in a linker script given on

 the command line, including scripts specified by -T (but not -dT).

 10. The default directories, normally /lib and /usr/lib.

 11. Any directories specified by a plugin LDPT_SET_EXTRA_LIBRARY_PATH.

 12. Any directories specified by a "SEARCH_DIR" command in a default linker script.

 Note however on Linux based systems there is an additional caveat: If the --as-needed

 option is active and a shared library is located which would normally satisfy the

 search and this library does not have DT_NEEDED tag for libc.so and there is a shared

 library later on in the set of search directories which also satisfies the search and

 this second shared library does have a DT_NEEDED tag for libc.so then the second

 library will be selected instead of the first.

 If the required shared library is not found, the linker will issue a warning and

 continue with the link.

 -shared

 -Bshareable

 Create a shared library. This is currently only supported on ELF, XCOFF and SunOS

 platforms. On SunOS, the linker will automatically create a shared library if the -e

 option is not used and there are undefined symbols in the link.

 --sort-common

 --sort-common=ascending

 --sort-common=descending Page 39/62

 This option tells ld to sort the common symbols by alignment in ascending or

 descending order when it places them in the appropriate output sections. The symbol

 alignments considered are sixteen-byte or larger, eight-byte, four-byte, two-byte, and

 one-byte. This is to prevent gaps between symbols due to alignment constraints. If no

 sorting order is specified, then descending order is assumed.

 --sort-section=name

 This option will apply "SORT_BY_NAME" to all wildcard section patterns in the linker

 script.

 --sort-section=alignment

 This option will apply "SORT_BY_ALIGNMENT" to all wildcard section patterns in the

 linker script.

 --spare-dynamic-tags=count

 This option specifies the number of empty slots to leave in the .dynamic section of

 ELF shared objects. Empty slots may be needed by post processing tools, such as the

 prelinker. The default is 5.

 --split-by-file[=size]

 Similar to --split-by-reloc but creates a new output section for each input file when

 size is reached. size defaults to a size of 1 if not given.

 --split-by-reloc[=count]

 Tries to creates extra sections in the output file so that no single output section in

 the file contains more than count relocations. This is useful when generating huge

 relocatable files for downloading into certain real time kernels with the COFF object

 file format; since COFF cannot represent more than 65535 relocations in a single

 section. Note that this will fail to work with object file formats which do not

 support arbitrary sections. The linker will not split up individual input sections

 for redistribution, so if a single input section contains more than count relocations

 one output section will contain that many relocations. count defaults to a value of

 32768.

 --stats

 Compute and display statistics about the operation of the linker, such as execution

 time and memory usage.

 --sysroot=directory

 Use directory as the location of the sysroot, overriding the configure-time default. Page 40/62

 This option is only supported by linkers that were configured using --with-sysroot.

 --task-link

 This is used by COFF/PE based targets to create a task-linked object file where all of

 the global symbols have been converted to statics.

 --traditional-format

 For some targets, the output of ld is different in some ways from the output of some

 existing linker. This switch requests ld to use the traditional format instead.

 For example, on SunOS, ld combines duplicate entries in the symbol string table. This

 can reduce the size of an output file with full debugging information by over 30

 percent. Unfortunately, the SunOS "dbx" program can not read the resulting program

 ("gdb" has no trouble). The --traditional-format switch tells ld to not combine

 duplicate entries.

 --section-start=sectionname=org

 Locate a section in the output file at the absolute address given by org. You may use

 this option as many times as necessary to locate multiple sections in the command

 line. org must be a single hexadecimal integer; for compatibility with other linkers,

 you may omit the leading 0x usually associated with hexadecimal values. Note: there

 should be no white space between sectionname, the equals sign ("="), and org.

 -Tbss=org

 -Tdata=org

 -Ttext=org

 Same as --section-start, with ".bss", ".data" or ".text" as the sectionname.

 -Ttext-segment=org

 When creating an ELF executable, it will set the address of the first byte of the text

 segment.

 -Trodata-segment=org

 When creating an ELF executable or shared object for a target where the read-only data

 is in its own segment separate from the executable text, it will set the address of

 the first byte of the read-only data segment.

 -Tldata-segment=org

 When creating an ELF executable or shared object for x86-64 medium memory model, it

 will set the address of the first byte of the ldata segment.

 --unresolved-symbols=method Page 41/62

 Determine how to handle unresolved symbols. There are four possible values for

 method:

 ignore-all

 Do not report any unresolved symbols.

 report-all

 Report all unresolved symbols. This is the default.

 ignore-in-object-files

 Report unresolved symbols that are contained in shared libraries, but ignore them

 if they come from regular object files.

 ignore-in-shared-libs

 Report unresolved symbols that come from regular object files, but ignore them if

 they come from shared libraries. This can be useful when creating a dynamic

 binary and it is known that all the shared libraries that it should be referencing

 are included on the linker's command line.

 The behaviour for shared libraries on their own can also be controlled by the

 --[no-]allow-shlib-undefined option.

 Normally the linker will generate an error message for each reported unresolved symbol

 but the option --warn-unresolved-symbols can change this to a warning.

 --dll-verbose

 --verbose[=NUMBER]

 Display the version number for ld and list the linker emulations supported. Display

 which input files can and cannot be opened. Display the linker script being used by

 the linker. If the optional NUMBER argument > 1, plugin symbol status will also be

 displayed.

 --version-script=version-scriptfile

 Specify the name of a version script to the linker. This is typically used when

 creating shared libraries to specify additional information about the version

 hierarchy for the library being created. This option is only fully supported on ELF

 platforms which support shared libraries; see VERSION. It is partially supported on

 PE platforms, which can use version scripts to filter symbol visibility in auto-export

 mode: any symbols marked local in the version script will not be exported.

 --warn-common

 Warn when a common symbol is combined with another common symbol or with a symbol Page 42/62

 definition. Unix linkers allow this somewhat sloppy practice, but linkers on some

 other operating systems do not. This option allows you to find potential problems

 from combining global symbols. Unfortunately, some C libraries use this practice, so

 you may get some warnings about symbols in the libraries as well as in your programs.

 There are three kinds of global symbols, illustrated here by C examples:

 int i = 1;

 A definition, which goes in the initialized data section of the output file.

 extern int i;

 An undefined reference, which does not allocate space. There must be either a

 definition or a common symbol for the variable somewhere.

 int i;

 A common symbol. If there are only (one or more) common symbols for a variable,

 it goes in the uninitialized data area of the output file. The linker merges

 multiple common symbols for the same variable into a single symbol. If they are

 of different sizes, it picks the largest size. The linker turns a common symbol

 into a declaration, if there is a definition of the same variable.

 The --warn-common option can produce five kinds of warnings. Each warning consists of

 a pair of lines: the first describes the symbol just encountered, and the second

 describes the previous symbol encountered with the same name. One or both of the two

 symbols will be a common symbol.

 1. Turning a common symbol into a reference, because there is already a definition

 for the symbol.

 <file>(<section>): warning: common of `<symbol>'

 overridden by definition

 <file>(<section>): warning: defined here

 2. Turning a common symbol into a reference, because a later definition for the

 symbol is encountered. This is the same as the previous case, except that the

 symbols are encountered in a different order.

 <file>(<section>): warning: definition of `<symbol>'

 overriding common

 <file>(<section>): warning: common is here

 3. Merging a common symbol with a previous same-sized common symbol.

 <file>(<section>): warning: multiple common Page 43/62

 of `<symbol>'

 <file>(<section>): warning: previous common is here

 4. Merging a common symbol with a previous larger common symbol.

 <file>(<section>): warning: common of `<symbol>'

 overridden by larger common

 <file>(<section>): warning: larger common is here

 5. Merging a common symbol with a previous smaller common symbol. This is the same

 as the previous case, except that the symbols are encountered in a different

 order.

 <file>(<section>): warning: common of `<symbol>'

 overriding smaller common

 <file>(<section>): warning: smaller common is here

 --warn-constructors

 Warn if any global constructors are used. This is only useful for a few object file

 formats. For formats like COFF or ELF, the linker can not detect the use of global

 constructors.

 --warn-multiple-gp

 Warn if multiple global pointer values are required in the output file. This is only

 meaningful for certain processors, such as the Alpha. Specifically, some processors

 put large-valued constants in a special section. A special register (the global

 pointer) points into the middle of this section, so that constants can be loaded

 efficiently via a base-register relative addressing mode. Since the offset in base-

 register relative mode is fixed and relatively small (e.g., 16 bits), this limits the

 maximum size of the constant pool. Thus, in large programs, it is often necessary to

 use multiple global pointer values in order to be able to address all possible

 constants. This option causes a warning to be issued whenever this case occurs.

 --warn-once

 Only warn once for each undefined symbol, rather than once per module which refers to

 it.

 --warn-section-align

 Warn if the address of an output section is changed because of alignment. Typically,

 the alignment will be set by an input section. The address will only be changed if it

 not explicitly specified; that is, if the "SECTIONS" command does not specify a start Page 44/62

 address for the section.

 --warn-textrel

 Warn if the linker adds DT_TEXTREL to a position-independent executable or shared

 object.

 --warn-alternate-em

 Warn if an object has alternate ELF machine code.

 --warn-unresolved-symbols

 If the linker is going to report an unresolved symbol (see the option

 --unresolved-symbols) it will normally generate an error. This option makes it

 generate a warning instead.

 --error-unresolved-symbols

 This restores the linker's default behaviour of generating errors when it is reporting

 unresolved symbols.

 --whole-archive

 For each archive mentioned on the command line after the --whole-archive option,

 include every object file in the archive in the link, rather than searching the

 archive for the required object files. This is normally used to turn an archive file

 into a shared library, forcing every object to be included in the resulting shared

 library. This option may be used more than once.

 Two notes when using this option from gcc: First, gcc doesn't know about this option,

 so you have to use -Wl,-whole-archive. Second, don't forget to use

 -Wl,-no-whole-archive after your list of archives, because gcc will add its own list

 of archives to your link and you may not want this flag to affect those as well.

 --wrap=symbol

 Use a wrapper function for symbol. Any undefined reference to symbol will be resolved

 to "__wrap_symbol". Any undefined reference to "__real_symbol" will be resolved to

 symbol.

 This can be used to provide a wrapper for a system function. The wrapper function

 should be called "__wrap_symbol". If it wishes to call the system function, it should

 call "__real_symbol".

 Here is a trivial example:

 void *

 __wrap_malloc (size_t c) Page 45/62

 {

 printf ("malloc called with %zu\n", c);

 return __real_malloc (c);

 }

 If you link other code with this file using --wrap malloc, then all calls to "malloc"

 will call the function "__wrap_malloc" instead. The call to "__real_malloc" in

 "__wrap_malloc" will call the real "malloc" function.

 You may wish to provide a "__real_malloc" function as well, so that links without the

 --wrap option will succeed. If you do this, you should not put the definition of

 "__real_malloc" in the same file as "__wrap_malloc"; if you do, the assembler may

 resolve the call before the linker has a chance to wrap it to "malloc".

 Only undefined references are replaced by the linker. So, translation unit internal

 references to symbol are not resolved to "__wrap_symbol". In the next example, the

 call to "f" in "g" is not resolved to "__wrap_f".

 int

 f (void)

 {

 return 123;

 }

 int

 g (void)

 {

 return f();

 }

 --eh-frame-hdr

 --no-eh-frame-hdr

 Request (--eh-frame-hdr) or suppress (--no-eh-frame-hdr) the creation of

 ".eh_frame_hdr" section and ELF "PT_GNU_EH_FRAME" segment header.

 --no-ld-generated-unwind-info

 Request creation of ".eh_frame" unwind info for linker generated code sections like

 PLT. This option is on by default if linker generated unwind info is supported.

 --enable-new-dtags

 --disable-new-dtags Page 46/62

 This linker can create the new dynamic tags in ELF. But the older ELF systems may not

 understand them. If you specify --enable-new-dtags, the new dynamic tags will be

 created as needed and older dynamic tags will be omitted. If you specify

 --disable-new-dtags, no new dynamic tags will be created. By default, the new dynamic

 tags are not created. Note that those options are only available for ELF systems.

 --hash-size=number

 Set the default size of the linker's hash tables to a prime number close to number.

 Increasing this value can reduce the length of time it takes the linker to perform its

 tasks, at the expense of increasing the linker's memory requirements. Similarly

 reducing this value can reduce the memory requirements at the expense of speed.

 --hash-style=style

 Set the type of linker's hash table(s). style can be either "sysv" for classic ELF

 ".hash" section, "gnu" for new style GNU ".gnu.hash" section or "both" for both the

 classic ELF ".hash" and new style GNU ".gnu.hash" hash tables. The default depends

 upon how the linker was configured, but for most Linux based systems it will be

 "both".

 --compress-debug-sections=none

 --compress-debug-sections=zlib

 --compress-debug-sections=zlib-gnu

 --compress-debug-sections=zlib-gabi

 On ELF platforms, these options control how DWARF debug sections are compressed using

 zlib.

 --compress-debug-sections=none doesn't compress DWARF debug sections.

 --compress-debug-sections=zlib-gnu compresses DWARF debug sections and renames them to

 begin with .zdebug instead of .debug. --compress-debug-sections=zlib-gabi also

 compresses DWARF debug sections, but rather than renaming them it sets the

 SHF_COMPRESSED flag in the sections' headers.

 The --compress-debug-sections=zlib option is an alias for

 --compress-debug-sections=zlib-gabi.

 Note that this option overrides any compression in input debug sections, so if a

 binary is linked with --compress-debug-sections=none for example, then any compressed

 debug sections in input files will be uncompressed before they are copied into the

 output binary. Page 47/62

 The default compression behaviour varies depending upon the target involved and the

 configure options used to build the toolchain. The default can be determined by

 examining the output from the linker's --help option.

 --reduce-memory-overheads

 This option reduces memory requirements at ld runtime, at the expense of linking

 speed. This was introduced to select the old O(n^2) algorithm for link map file

 generation, rather than the new O(n) algorithm which uses about 40% more memory for

 symbol storage.

 Another effect of the switch is to set the default hash table size to 1021, which

 again saves memory at the cost of lengthening the linker's run time. This is not done

 however if the --hash-size switch has been used.

 The --reduce-memory-overheads switch may be also be used to enable other tradeoffs in

 future versions of the linker.

 --max-cache-size=size

 ld normally caches the relocation information and symbol tables of input files in

 memory with the unlimited size. This option sets the maximum cache size to size.

 --build-id

 --build-id=style

 Request the creation of a ".note.gnu.build-id" ELF note section or a ".buildid" COFF

 section. The contents of the note are unique bits identifying this linked file.

 style can be "uuid" to use 128 random bits, "sha1" to use a 160-bit SHA1 hash on the

 normative parts of the output contents, "md5" to use a 128-bit MD5 hash on the

 normative parts of the output contents, or "0xhexstring" to use a chosen bit string

 specified as an even number of hexadecimal digits ("-" and ":" characters between

 digit pairs are ignored). If style is omitted, "sha1" is used.

 The "md5" and "sha1" styles produces an identifier that is always the same in an

 identical output file, but will be unique among all nonidentical output files. It is

 not intended to be compared as a checksum for the file's contents. A linked file may

 be changed later by other tools, but the build ID bit string identifying the original

 linked file does not change.

 Passing "none" for style disables the setting from any "--build-id" options earlier on

 the command line.

 The i386 PE linker supports the -shared option, which causes the output to be a Page 48/62

 dynamically linked library (DLL) instead of a normal executable. You should name the

 output "*.dll" when you use this option. In addition, the linker fully supports the

 standard "*.def" files, which may be specified on the linker command line like an object

 file (in fact, it should precede archives it exports symbols from, to ensure that they get

 linked in, just like a normal object file).

 In addition to the options common to all targets, the i386 PE linker support additional

 command-line options that are specific to the i386 PE target. Options that take values

 may be separated from their values by either a space or an equals sign.

 --add-stdcall-alias

 If given, symbols with a stdcall suffix (@nn) will be exported as-is and also with the

 suffix stripped. [This option is specific to the i386 PE targeted port of the linker]

 --base-file file

 Use file as the name of a file in which to save the base addresses of all the

 relocations needed for generating DLLs with dlltool. [This is an i386 PE specific

 option]

 --dll

 Create a DLL instead of a regular executable. You may also use -shared or specify a

 "LIBRARY" in a given ".def" file. [This option is specific to the i386 PE targeted

 port of the linker]

 --enable-long-section-names

 --disable-long-section-names

 The PE variants of the COFF object format add an extension that permits the use of

 section names longer than eight characters, the normal limit for COFF. By default,

 these names are only allowed in object files, as fully-linked executable images do not

 carry the COFF string table required to support the longer names. As a GNU extension,

 it is possible to allow their use in executable images as well, or to (probably

 pointlessly!) disallow it in object files, by using these two options. Executable

 images generated with these long section names are slightly non-standard, carrying as

 they do a string table, and may generate confusing output when examined with non-GNU

 PE-aware tools, such as file viewers and dumpers. However, GDB relies on the use of

 PE long section names to find Dwarf-2 debug information sections in an executable

 image at runtime, and so if neither option is specified on the command-line, ld will

 enable long section names, overriding the default and technically correct behaviour, Page 49/62

 when it finds the presence of debug information while linking an executable image and

 not stripping symbols. [This option is valid for all PE targeted ports of the linker]

 --enable-stdcall-fixup

 --disable-stdcall-fixup

 If the link finds a symbol that it cannot resolve, it will attempt to do "fuzzy

 linking" by looking for another defined symbol that differs only in the format of the

 symbol name (cdecl vs stdcall) and will resolve that symbol by linking to the match.

 For example, the undefined symbol "_foo" might be linked to the function "_foo@12", or

 the undefined symbol "_bar@16" might be linked to the function "_bar". When the

 linker does this, it prints a warning, since it normally should have failed to link,

 but sometimes import libraries generated from third-party dlls may need this feature

 to be usable. If you specify --enable-stdcall-fixup, this feature is fully enabled

 and warnings are not printed. If you specify --disable-stdcall-fixup, this feature is

 disabled and such mismatches are considered to be errors. [This option is specific to

 the i386 PE targeted port of the linker]

 --leading-underscore

 --no-leading-underscore

 For most targets default symbol-prefix is an underscore and is defined in target's

 description. By this option it is possible to disable/enable the default underscore

 symbol-prefix.

 --export-all-symbols

 If given, all global symbols in the objects used to build a DLL will be exported by

 the DLL. Note that this is the default if there otherwise wouldn't be any exported

 symbols. When symbols are explicitly exported via DEF files or implicitly exported

 via function attributes, the default is to not export anything else unless this option

 is given. Note that the symbols "DllMain@12", "DllEntryPoint@0",

 "DllMainCRTStartup@12", and "impure_ptr" will not be automatically exported. Also,

 symbols imported from other DLLs will not be re-exported, nor will symbols specifying

 the DLL's internal layout such as those beginning with "_head_" or ending with

 "_iname". In addition, no symbols from "libgcc", "libstd++", "libmingw32", or

 "crtX.o" will be exported. Symbols whose names begin with "__rtti_" or "__builtin_"

 will not be exported, to help with C++ DLLs. Finally, there is an extensive list of

 cygwin-private symbols that are not exported (obviously, this applies on when building Page 50/62

 DLLs for cygwin targets). These cygwin-excludes are: "_cygwin_dll_entry@12",

 "_cygwin_crt0_common@8", "_cygwin_noncygwin_dll_entry@12", "_fmode", "_impure_ptr",

 "cygwin_attach_dll", "cygwin_premain0", "cygwin_premain1", "cygwin_premain2",

 "cygwin_premain3", and "environ". [This option is specific to the i386 PE targeted

 port of the linker]

 --exclude-symbols symbol,symbol,...

 Specifies a list of symbols which should not be automatically exported. The symbol

 names may be delimited by commas or colons. [This option is specific to the i386 PE

 targeted port of the linker]

 --exclude-all-symbols

 Specifies no symbols should be automatically exported. [This option is specific to

 the i386 PE targeted port of the linker]

 --file-alignment

 Specify the file alignment. Sections in the file will always begin at file offsets

 which are multiples of this number. This defaults to 512. [This option is specific

 to the i386 PE targeted port of the linker]

 --heap reserve

 --heap reserve,commit

 Specify the number of bytes of memory to reserve (and optionally commit) to be used as

 heap for this program. The default is 1MB reserved, 4K committed. [This option is

 specific to the i386 PE targeted port of the linker]

 --image-base value

 Use value as the base address of your program or dll. This is the lowest memory

 location that will be used when your program or dll is loaded. To reduce the need to

 relocate and improve performance of your dlls, each should have a unique base address

 and not overlap any other dlls. The default is 0x400000 for executables, and

 0x10000000 for dlls. [This option is specific to the i386 PE targeted port of the

 linker]

 --kill-at

 If given, the stdcall suffixes (@nn) will be stripped from symbols before they are

 exported. [This option is specific to the i386 PE targeted port of the linker]

 --large-address-aware

 If given, the appropriate bit in the "Characteristics" field of the COFF header is set Page 51/62

 to indicate that this executable supports virtual addresses greater than 2 gigabytes.

 This should be used in conjunction with the /3GB or /USERVA=value megabytes switch in

 the "[operating systems]" section of the BOOT.INI. Otherwise, this bit has no effect.

 [This option is specific to PE targeted ports of the linker]

 --disable-large-address-aware

 Reverts the effect of a previous --large-address-aware option. This is useful if

 --large-address-aware is always set by the compiler driver (e.g. Cygwin gcc) and the

 executable does not support virtual addresses greater than 2 gigabytes. [This option

 is specific to PE targeted ports of the linker]

 --major-image-version value

 Sets the major number of the "image version". Defaults to 1. [This option is

 specific to the i386 PE targeted port of the linker]

 --major-os-version value

 Sets the major number of the "os version". Defaults to 4. [This option is specific

 to the i386 PE targeted port of the linker]

 --major-subsystem-version value

 Sets the major number of the "subsystem version". Defaults to 4. [This option is

 specific to the i386 PE targeted port of the linker]

 --minor-image-version value

 Sets the minor number of the "image version". Defaults to 0. [This option is

 specific to the i386 PE targeted port of the linker]

 --minor-os-version value

 Sets the minor number of the "os version". Defaults to 0. [This option is specific

 to the i386 PE targeted port of the linker]

 --minor-subsystem-version value

 Sets the minor number of the "subsystem version". Defaults to 0. [This option is

 specific to the i386 PE targeted port of the linker]

 --output-def file

 The linker will create the file file which will contain a DEF file corresponding to

 the DLL the linker is generating. This DEF file (which should be called "*.def") may

 be used to create an import library with "dlltool" or may be used as a reference to

 automatically or implicitly exported symbols. [This option is specific to the i386 PE

 targeted port of the linker] Page 52/62

 --enable-auto-image-base

 --enable-auto-image-base=value

 Automatically choose the image base for DLLs, optionally starting with base value,

 unless one is specified using the "--image-base" argument. By using a hash generated

 from the dllname to create unique image bases for each DLL, in-memory collisions and

 relocations which can delay program execution are avoided. [This option is specific

 to the i386 PE targeted port of the linker]

 --disable-auto-image-base

 Do not automatically generate a unique image base. If there is no user-specified

 image base ("--image-base") then use the platform default. [This option is specific

 to the i386 PE targeted port of the linker]

 --dll-search-prefix string

 When linking dynamically to a dll without an import library, search for

 "<string><basename>.dll" in preference to "lib<basename>.dll". This behaviour allows

 easy distinction between DLLs built for the various "subplatforms": native, cygwin,

 uwin, pw, etc. For instance, cygwin DLLs typically use "--dll-search-prefix=cyg".

 [This option is specific to the i386 PE targeted port of the linker]

 --enable-auto-import

 Do sophisticated linking of "_symbol" to "__imp__symbol" for DATA imports from DLLs,

 thus making it possible to bypass the dllimport mechanism on the user side and to

 reference unmangled symbol names. [This option is specific to the i386 PE targeted

 port of the linker]

 The following remarks pertain to the original implementation of the feature and are

 obsolete nowadays for Cygwin and MinGW targets.

 Note: Use of the 'auto-import' extension will cause the text section of the image file

 to be made writable. This does not conform to the PE-COFF format specification

 published by Microsoft.

 Note - use of the 'auto-import' extension will also cause read only data which would

 normally be placed into the .rdata section to be placed into the .data section

 instead. This is in order to work around a problem with consts that is described

 here: http://www.cygwin.com/ml/cygwin/2004-09/msg01101.html

 Using 'auto-import' generally will 'just work' -- but sometimes you may see this

 message: Page 53/62

 "variable '<var>' can't be auto-imported. Please read the documentation for ld's

 "--enable-auto-import" for details."

 This message occurs when some (sub)expression accesses an address ultimately given by

 the sum of two constants (Win32 import tables only allow one). Instances where this

 may occur include accesses to member fields of struct variables imported from a DLL,

 as well as using a constant index into an array variable imported from a DLL. Any

 multiword variable (arrays, structs, long long, etc) may trigger this error condition.

 However, regardless of the exact data type of the offending exported variable, ld will

 always detect it, issue the warning, and exit.

 There are several ways to address this difficulty, regardless of the data type of the

 exported variable:

 One way is to use --enable-runtime-pseudo-reloc switch. This leaves the task of

 adjusting references in your client code for runtime environment, so this method works

 only when runtime environment supports this feature.

 A second solution is to force one of the 'constants' to be a variable -- that is,

 unknown and un-optimizable at compile time. For arrays, there are two possibilities:

 a) make the indexee (the array's address) a variable, or b) make the 'constant' index

 a variable. Thus:

 extern type extern_array[];

 extern_array[1] -->

 { volatile type *t=extern_array; t[1] }

 or

 extern type extern_array[];

 extern_array[1] -->

 { volatile int t=1; extern_array[t] }

 For structs (and most other multiword data types) the only option is to make the

 struct itself (or the long long, or the ...) variable:

 extern struct s extern_struct;

 extern_struct.field -->

 { volatile struct s *t=&extern_struct; t->field }

 or

 extern long long extern_ll;

 extern_ll --> Page 54/62

 { volatile long long * local_ll=&extern_ll; *local_ll }

 A third method of dealing with this difficulty is to abandon 'auto-import' for the

 offending symbol and mark it with "__declspec(dllimport)". However, in practice that

 requires using compile-time #defines to indicate whether you are building a DLL,

 building client code that will link to the DLL, or merely building/linking to a static

 library. In making the choice between the various methods of resolving the 'direct

 address with constant offset' problem, you should consider typical real-world usage:

 Original:

 --foo.h

 extern int arr[];

 --foo.c

 #include "foo.h"

 void main(int argc, char **argv){

 printf("%d\n",arr[1]);

 }

 Solution 1:

 --foo.h

 extern int arr[];

 --foo.c

 #include "foo.h"

 void main(int argc, char **argv){

 /* This workaround is for win32 and cygwin; do not "optimize" */

 volatile int *parr = arr;

 printf("%d\n",parr[1]);

 }

 Solution 2:

 --foo.h

 /* Note: auto-export is assumed (no __declspec(dllexport)) */

 #if (defined(_WIN32) || defined(__CYGWIN__)) && \

 !(defined(FOO_BUILD_DLL) || defined(FOO_STATIC))

 #define FOO_IMPORT __declspec(dllimport)

 #else

 #define FOO_IMPORT Page 55/62

 #endif

 extern FOO_IMPORT int arr[];

 --foo.c

 #include "foo.h"

 void main(int argc, char **argv){

 printf("%d\n",arr[1]);

 }

 A fourth way to avoid this problem is to re-code your library to use a functional

 interface rather than a data interface for the offending variables (e.g. set_foo() and

 get_foo() accessor functions).

 --disable-auto-import

 Do not attempt to do sophisticated linking of "_symbol" to "__imp__symbol" for DATA

 imports from DLLs. [This option is specific to the i386 PE targeted port of the

 linker]

 --enable-runtime-pseudo-reloc

 If your code contains expressions described in --enable-auto-import section, that is,

 DATA imports from DLL with non-zero offset, this switch will create a vector of

 'runtime pseudo relocations' which can be used by runtime environment to adjust

 references to such data in your client code. [This option is specific to the i386 PE

 targeted port of the linker]

 --disable-runtime-pseudo-reloc

 Do not create pseudo relocations for non-zero offset DATA imports from DLLs. [This

 option is specific to the i386 PE targeted port of the linker]

 --enable-extra-pe-debug

 Show additional debug info related to auto-import symbol thunking. [This option is

 specific to the i386 PE targeted port of the linker]

 --section-alignment

 Sets the section alignment. Sections in memory will always begin at addresses which

 are a multiple of this number. Defaults to 0x1000. [This option is specific to the

 i386 PE targeted port of the linker]

 --stack reserve

 --stack reserve,commit

 Specify the number of bytes of memory to reserve (and optionally commit) to be used as Page 56/62

 stack for this program. The default is 2MB reserved, 4K committed. [This option is

 specific to the i386 PE targeted port of the linker]

 --subsystem which

 --subsystem which:major

 --subsystem which:major.minor

 Specifies the subsystem under which your program will execute. The legal values for

 which are "native", "windows", "console", "posix", and "xbox". You may optionally set

 the subsystem version also. Numeric values are also accepted for which. [This option

 is specific to the i386 PE targeted port of the linker]

 The following options set flags in the "DllCharacteristics" field of the PE file

 header: [These options are specific to PE targeted ports of the linker]

 --high-entropy-va

 --disable-high-entropy-va

 Image is compatible with 64-bit address space layout randomization (ASLR). This

 option is enabled by default for 64-bit PE images.

 This option also implies --dynamicbase and --enable-reloc-section.

 --dynamicbase

 --disable-dynamicbase

 The image base address may be relocated using address space layout randomization

 (ASLR). This feature was introduced with MS Windows Vista for i386 PE targets. This

 option is enabled by default but can be disabled via the --disable-dynamicbase option.

 This option also implies --enable-reloc-section.

 --forceinteg

 --disable-forceinteg

 Code integrity checks are enforced. This option is disabled by default.

 --nxcompat

 --disable-nxcompat

 The image is compatible with the Data Execution Prevention. This feature was

 introduced with MS Windows XP SP2 for i386 PE targets. The option is enabled by

 default.

 --no-isolation

 --disable-no-isolation

 Although the image understands isolation, do not isolate the image. This option is Page 57/62

 disabled by default.

 --no-seh

 --disable-no-seh

 The image does not use SEH. No SE handler may be called from this image. This option

 is disabled by default.

 --no-bind

 --disable-no-bind

 Do not bind this image. This option is disabled by default.

 --wdmdriver

 --disable-wdmdriver

 The driver uses the MS Windows Driver Model. This option is disabled by default.

 --tsaware

 --disable-tsaware

 The image is Terminal Server aware. This option is disabled by default.

 --insert-timestamp

 --no-insert-timestamp

 Insert a real timestamp into the image. This is the default behaviour as it matches

 legacy code and it means that the image will work with other, proprietary tools. The

 problem with this default is that it will result in slightly different images being

 produced each time the same sources are linked. The option --no-insert-timestamp can

 be used to insert a zero value for the timestamp, this ensuring that binaries produced

 from identical sources will compare identically.

 --enable-reloc-section

 --disable-reloc-section

 Create the base relocation table, which is necessary if the image is loaded at a

 different image base than specified in the PE header. This option is enabled by

 default.

 The C6X uClinux target uses a binary format called DSBT to support shared libraries. Each

 shared library in the system needs to have a unique index; all executables use an index of

 0.

 --dsbt-size size

 This option sets the number of entries in the DSBT of the current executable or shared

 library to size. The default is to create a table with 64 entries. Page 58/62

 --dsbt-index index

 This option sets the DSBT index of the current executable or shared library to index.

 The default is 0, which is appropriate for generating executables. If a shared

 library is generated with a DSBT index of 0, the "R_C6000_DSBT_INDEX" relocs are

 copied into the output file.

 The --no-merge-exidx-entries switch disables the merging of adjacent exidx entries in

 frame unwind info.

 --branch-stub

 This option enables linker branch relaxation by inserting branch stub sections when

 needed to extend the range of branches. This option is usually not required since

 C-SKY supports branch and call instructions that can access the full memory range and

 branch relaxation is normally handled by the compiler or assembler.

 --stub-group-size=N

 This option allows finer control of linker branch stub creation. It sets the maximum

 size of a group of input sections that can be handled by one stub section. A negative

 value of N locates stub sections after their branches, while a positive value allows

 stub sections to appear either before or after the branches. Values of 1 or -1

 indicate that the linker should choose suitable defaults.

 The 68HC11 and 68HC12 linkers support specific options to control the memory bank

 switching mapping and trampoline code generation.

 --no-trampoline

 This option disables the generation of trampoline. By default a trampoline is

 generated for each far function which is called using a "jsr" instruction (this

 happens when a pointer to a far function is taken).

 --bank-window name

 This option indicates to the linker the name of the memory region in the MEMORY

 specification that describes the memory bank window. The definition of such region is

 then used by the linker to compute paging and addresses within the memory window.

 The following options are supported to control handling of GOT generation when linking for

 68K targets.

 --got=type

 This option tells the linker which GOT generation scheme to use. type should be one

 of single, negative, multigot or target. For more information refer to the Info entry Page 59/62

 for ld.

 The following options are supported to control microMIPS instruction generation and branch

 relocation checks for ISA mode transitions when linking for MIPS targets.

 --insn32

 --no-insn32

 These options control the choice of microMIPS instructions used in code generated by

 the linker, such as that in the PLT or lazy binding stubs, or in relaxation. If

 --insn32 is used, then the linker only uses 32-bit instruction encodings. By default

 or if --no-insn32 is used, all instruction encodings are used, including 16-bit ones

 where possible.

 --ignore-branch-isa

 --no-ignore-branch-isa

 These options control branch relocation checks for invalid ISA mode transitions. If

 --ignore-branch-isa is used, then the linker accepts any branch relocations and any

 ISA mode transition required is lost in relocation calculation, except for some cases

 of "BAL" instructions which meet relaxation conditions and are converted to equivalent

 "JALX" instructions as the associated relocation is calculated. By default or if

 --no-ignore-branch-isa is used a check is made causing the loss of an ISA mode

 transition to produce an error.

 --compact-branches

 --no-compact-branches

 These options control the generation of compact instructions by the linker in the PLT

 entries for MIPS R6.

 For the pdp11-aout target, three variants of the output format can be produced as selected

 by the following options. The default variant for pdp11-aout is the --omagic option,

 whereas for other targets --nmagic is the default. The --imagic option is defined only

 for the pdp11-aout target, while the others are described here as they apply to the

 pdp11-aout target.

 -N

 --omagic

 Mark the output as "OMAGIC" (0407) in the a.out header to indicate that the text

 segment is not to be write-protected and shared. Since the text and data sections are

 both readable and writable, the data section is allocated immediately contiguous after Page 60/62

 the text segment. This is the oldest format for PDP11 executable programs and is the

 default for ld on PDP11 Unix systems from the beginning through 2.11BSD.

 -n

 --nmagic

 Mark the output as "NMAGIC" (0410) in the a.out header to indicate that when the

 output file is executed, the text portion will be read-only and shareable among all

 processes executing the same file. This involves moving the data areas up to the

 first possible 8K byte page boundary following the end of the text. This option

 creates a pure executable format.

 -z

 --imagic

 Mark the output as "IMAGIC" (0411) in the a.out header to indicate that when the

 output file is executed, the program text and data areas will be loaded into separate

 address spaces using the split instruction and data space feature of the memory

 management unit in larger models of the PDP11. This doubles the address space

 available to the program. The text segment is again pure, write-protected, and

 shareable. The only difference in the output format between this option and the

 others, besides the magic number, is that both the text and data sections start at

 location 0. The -z option selected this format in 2.11BSD. This option creates a

 separate executable format.

 --no-omagic

 Equivalent to --nmagic for pdp11-aout.

ENVIRONMENT

 You can change the behaviour of ld with the environment variables "GNUTARGET",

 "LDEMULATION" and "COLLECT_NO_DEMANGLE".

 "GNUTARGET" determines the input-file object format if you don't use -b (or its synonym

 --format). Its value should be one of the BFD names for an input format. If there is no

 "GNUTARGET" in the environment, ld uses the natural format of the target. If "GNUTARGET"

 is set to "default" then BFD attempts to discover the input format by examining binary

 input files; this method often succeeds, but there are potential ambiguities, since there

 is no method of ensuring that the magic number used to specify object-file formats is

 unique. However, the configuration procedure for BFD on each system places the

 conventional format for that system first in the search-list, so ambiguities are resolved Page 61/62

 in favor of convention.

 "LDEMULATION" determines the default emulation if you don't use the -m option. The

 emulation can affect various aspects of linker behaviour, particularly the default linker

 script. You can list the available emulations with the --verbose or -V options. If the

 -m option is not used, and the "LDEMULATION" environment variable is not defined, the

 default emulation depends upon how the linker was configured.

 Normally, the linker will default to demangling symbols. However, if

 "COLLECT_NO_DEMANGLE" is set in the environment, then it will default to not demangling

 symbols. This environment variable is used in a similar fashion by the "gcc" linker

 wrapper program. The default may be overridden by the --demangle and --no-demangle

 options.

SEE ALSO

 ar(1), nm(1), objcopy(1), objdump(1), readelf(1) and the Info entries for binutils and ld.

COPYRIGHT

 Copyright (c) 1991-2022 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document under the terms of

 the GNU Free Documentation License, Version 1.3 or any later version published by the Free

 Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no

 Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

 Documentation License".

binutils-2.38 2024-01-23 LD(1)

Page 62/62

