
Rocky Enterprise Linux 9.2 Manual Pages on command 'x86_64-linux-gnu-cpp-11.1'

$ man x86_64-linux-gnu-cpp-11.1

CPP(1) GNU CPP(1)

NAME

 cpp - The C Preprocessor

SYNOPSIS

 cpp [-Dmacro[=defn]...] [-Umacro]

 [-Idir...] [-iquotedir...]

 [-M|-MM] [-MG] [-MF filename]

 [-MP] [-MQ target...]

 [-MT target...]

 infile [[-o] outfile]

 Only the most useful options are given above; see below for a more complete list of

 preprocessor-specific options. In addition, cpp accepts most gcc driver options, which

 are not listed here. Refer to the GCC documentation for details.

DESCRIPTION

 The C preprocessor, often known as cpp, is a macro processor that is used automatically by

 the C compiler to transform your program before compilation. It is called a macro

 processor because it allows you to define macros, which are brief abbreviations for longer

 constructs.

 The C preprocessor is intended to be used only with C, C++, and Objective-C source code.

 In the past, it has been abused as a general text processor. It will choke on input which

 does not obey C's lexical rules. For example, apostrophes will be interpreted as the

 beginning of character constants, and cause errors. Also, you cannot rely on it

 preserving characteristics of the input which are not significant to C-family languages. Page 1/15

 If a Makefile is preprocessed, all the hard tabs will be removed, and the Makefile will

 not work.

 Having said that, you can often get away with using cpp on things which are not C. Other

 Algol-ish programming languages are often safe (Ada, etc.) So is assembly, with caution.

 -traditional-cpp mode preserves more white space, and is otherwise more permissive. Many

 of the problems can be avoided by writing C or C++ style comments instead of native

 language comments, and keeping macros simple.

 Wherever possible, you should use a preprocessor geared to the language you are writing

 in. Modern versions of the GNU assembler have macro facilities. Most high level

 programming languages have their own conditional compilation and inclusion mechanism. If

 all else fails, try a true general text processor, such as GNU M4.

 C preprocessors vary in some details. This manual discusses the GNU C preprocessor, which

 provides a small superset of the features of ISO Standard C. In its default mode, the GNU

 C preprocessor does not do a few things required by the standard. These are features

 which are rarely, if ever, used, and may cause surprising changes to the meaning of a

 program which does not expect them. To get strict ISO Standard C, you should use the

 -std=c90, -std=c99, -std=c11 or -std=c17 options, depending on which version of the

 standard you want. To get all the mandatory diagnostics, you must also use -pedantic.

 This manual describes the behavior of the ISO preprocessor. To minimize gratuitous

 differences, where the ISO preprocessor's behavior does not conflict with traditional

 semantics, the traditional preprocessor should behave the same way. The various

 differences that do exist are detailed in the section Traditional Mode.

 For clarity, unless noted otherwise, references to CPP in this manual refer to GNU CPP.

OPTIONS

 The cpp command expects two file names as arguments, infile and outfile. The preprocessor

 reads infile together with any other files it specifies with #include. All the output

 generated by the combined input files is written in outfile.

 Either infile or outfile may be -, which as infile means to read from standard input and

 as outfile means to write to standard output. If either file is omitted, it means the

 same as if - had been specified for that file. You can also use the -o outfile option to

 specify the output file.

 Unless otherwise noted, or the option ends in =, all options which take an argument may

 have that argument appear either immediately after the option, or with a space between Page 2/15

 option and argument: -Ifoo and -I foo have the same effect.

 Many options have multi-letter names; therefore multiple single-letter options may not be

 grouped: -dM is very different from -d -M.

 -D name

 Predefine name as a macro, with definition 1.

 -D name=definition

 The contents of definition are tokenized and processed as if they appeared during

 translation phase three in a #define directive. In particular, the definition is

 truncated by embedded newline characters.

 If you are invoking the preprocessor from a shell or shell-like program you may need

 to use the shell's quoting syntax to protect characters such as spaces that have a

 meaning in the shell syntax.

 If you wish to define a function-like macro on the command line, write its argument

 list with surrounding parentheses before the equals sign (if any). Parentheses are

 meaningful to most shells, so you should quote the option. With sh and csh,

 -D'name(args...)=definition' works.

 -D and -U options are processed in the order they are given on the command line. All

 -imacros file and -include file options are processed after all -D and -U options.

 -U name

 Cancel any previous definition of name, either built in or provided with a -D option.

 -include file

 Process file as if "#include "file"" appeared as the first line of the primary source

 file. However, the first directory searched for file is the preprocessor's working

 directory instead of the directory containing the main source file. If not found

 there, it is searched for in the remainder of the "#include "..."" search chain as

 normal.

 If multiple -include options are given, the files are included in the order they

 appear on the command line.

 -imacros file

 Exactly like -include, except that any output produced by scanning file is thrown

 away. Macros it defines remain defined. This allows you to acquire all the macros

 from a header without also processing its declarations.

 All files specified by -imacros are processed before all files specified by -include. Page 3/15

 -undef

 Do not predefine any system-specific or GCC-specific macros. The standard predefined

 macros remain defined.

 -pthread

 Define additional macros required for using the POSIX threads library. You should use

 this option consistently for both compilation and linking. This option is supported

 on GNU/Linux targets, most other Unix derivatives, and also on x86 Cygwin and MinGW

 targets.

 -M Instead of outputting the result of preprocessing, output a rule suitable for make

 describing the dependencies of the main source file. The preprocessor outputs one

 make rule containing the object file name for that source file, a colon, and the names

 of all the included files, including those coming from -include or -imacros command-

 line options.

 Unless specified explicitly (with -MT or -MQ), the object file name consists of the

 name of the source file with any suffix replaced with object file suffix and with any

 leading directory parts removed. If there are many included files then the rule is

 split into several lines using \-newline. The rule has no commands.

 This option does not suppress the preprocessor's debug output, such as -dM. To avoid

 mixing such debug output with the dependency rules you should explicitly specify the

 dependency output file with -MF, or use an environment variable like

 DEPENDENCIES_OUTPUT. Debug output is still sent to the regular output stream as

 normal.

 Passing -M to the driver implies -E, and suppresses warnings with an implicit -w.

 -MM Like -M but do not mention header files that are found in system header directories,

 nor header files that are included, directly or indirectly, from such a header.

 This implies that the choice of angle brackets or double quotes in an #include

 directive does not in itself determine whether that header appears in -MM dependency

 output.

 -MF file

 When used with -M or -MM, specifies a file to write the dependencies to. If no -MF

 switch is given the preprocessor sends the rules to the same place it would send

 preprocessed output.

 When used with the driver options -MD or -MMD, -MF overrides the default dependency Page 4/15

 output file.

 If file is -, then the dependencies are written to stdout.

 -MG In conjunction with an option such as -M requesting dependency generation, -MG assumes

 missing header files are generated files and adds them to the dependency list without

 raising an error. The dependency filename is taken directly from the "#include"

 directive without prepending any path. -MG also suppresses preprocessed output, as a

 missing header file renders this useless.

 This feature is used in automatic updating of makefiles.

 -Mno-modules

 Disable dependency generation for compiled module interfaces.

 -MP This option instructs CPP to add a phony target for each dependency other than the

 main file, causing each to depend on nothing. These dummy rules work around errors

 make gives if you remove header files without updating the Makefile to match.

 This is typical output:

 test.o: test.c test.h

 test.h:

 -MT target

 Change the target of the rule emitted by dependency generation. By default CPP takes

 the name of the main input file, deletes any directory components and any file suffix

 such as .c, and appends the platform's usual object suffix. The result is the target.

 An -MT option sets the target to be exactly the string you specify. If you want

 multiple targets, you can specify them as a single argument to -MT, or use multiple

 -MT options.

 For example, -MT '$(objpfx)foo.o' might give

 $(objpfx)foo.o: foo.c

 -MQ target

 Same as -MT, but it quotes any characters which are special to Make.

 -MQ '$(objpfx)foo.o' gives

 $$(objpfx)foo.o: foo.c

 The default target is automatically quoted, as if it were given with -MQ.

 -MD -MD is equivalent to -M -MF file, except that -E is not implied. The driver

 determines file based on whether an -o option is given. If it is, the driver uses its

 argument but with a suffix of .d, otherwise it takes the name of the input file, Page 5/15

 removes any directory components and suffix, and applies a .d suffix.

 If -MD is used in conjunction with -E, any -o switch is understood to specify the

 dependency output file, but if used without -E, each -o is understood to specify a

 target object file.

 Since -E is not implied, -MD can be used to generate a dependency output file as a

 side effect of the compilation process.

 -MMD

 Like -MD except mention only user header files, not system header files.

 -fpreprocessed

 Indicate to the preprocessor that the input file has already been preprocessed. This

 suppresses things like macro expansion, trigraph conversion, escaped newline splicing,

 and processing of most directives. The preprocessor still recognizes and removes

 comments, so that you can pass a file preprocessed with -C to the compiler without

 problems. In this mode the integrated preprocessor is little more than a tokenizer

 for the front ends.

 -fpreprocessed is implicit if the input file has one of the extensions .i, .ii or .mi.

 These are the extensions that GCC uses for preprocessed files created by -save-temps.

 -fdirectives-only

 When preprocessing, handle directives, but do not expand macros.

 The option's behavior depends on the -E and -fpreprocessed options.

 With -E, preprocessing is limited to the handling of directives such as "#define",

 "#ifdef", and "#error". Other preprocessor operations, such as macro expansion and

 trigraph conversion are not performed. In addition, the -dD option is implicitly

 enabled.

 With -fpreprocessed, predefinition of command line and most builtin macros is

 disabled. Macros such as "__LINE__", which are contextually dependent, are handled

 normally. This enables compilation of files previously preprocessed with "-E

 -fdirectives-only".

 With both -E and -fpreprocessed, the rules for -fpreprocessed take precedence. This

 enables full preprocessing of files previously preprocessed with "-E

 -fdirectives-only".

 -fdollars-in-identifiers

 Accept $ in identifiers. Page 6/15

 -fextended-identifiers

 Accept universal character names and extended characters in identifiers. This option

 is enabled by default for C99 (and later C standard versions) and C++.

 -fno-canonical-system-headers

 When preprocessing, do not shorten system header paths with canonicalization.

 -fmax-include-depth=depth

 Set the maximum depth of the nested #include. The default is 200.

 -ftabstop=width

 Set the distance between tab stops. This helps the preprocessor report correct column

 numbers in warnings or errors, even if tabs appear on the line. If the value is less

 than 1 or greater than 100, the option is ignored. The default is 8.

 -ftrack-macro-expansion[=level]

 Track locations of tokens across macro expansions. This allows the compiler to emit

 diagnostic about the current macro expansion stack when a compilation error occurs in

 a macro expansion. Using this option makes the preprocessor and the compiler consume

 more memory. The level parameter can be used to choose the level of precision of token

 location tracking thus decreasing the memory consumption if necessary. Value 0 of

 level de-activates this option. Value 1 tracks tokens locations in a degraded mode for

 the sake of minimal memory overhead. In this mode all tokens resulting from the

 expansion of an argument of a function-like macro have the same location. Value 2

 tracks tokens locations completely. This value is the most memory hungry. When this

 option is given no argument, the default parameter value is 2.

 Note that "-ftrack-macro-expansion=2" is activated by default.

 -fmacro-prefix-map=old=new

 When preprocessing files residing in directory old, expand the "__FILE__" and

 "__BASE_FILE__" macros as if the files resided in directory new instead. This can be

 used to change an absolute path to a relative path by using . for new which can result

 in more reproducible builds that are location independent. This option also affects

 "__builtin_FILE()" during compilation. See also -ffile-prefix-map.

 -fexec-charset=charset

 Set the execution character set, used for string and character constants. The default

 is UTF-8. charset can be any encoding supported by the system's "iconv" library

 routine. Page 7/15

 -fwide-exec-charset=charset

 Set the wide execution character set, used for wide string and character constants.

 The default is one of UTF-32BE, UTF-32LE, UTF-16BE, or UTF-16LE, whichever corresponds

 to the width of "wchar_t" and the big-endian or little-endian byte order being used

 for code generation. As with -fexec-charset, charset can be any encoding supported by

 the system's "iconv" library routine; however, you will have problems with encodings

 that do not fit exactly in "wchar_t".

 -finput-charset=charset

 Set the input character set, used for translation from the character set of the input

 file to the source character set used by GCC. If the locale does not specify, or GCC

 cannot get this information from the locale, the default is UTF-8. This can be

 overridden by either the locale or this command-line option. Currently the command-

 line option takes precedence if there's a conflict. charset can be any encoding

 supported by the system's "iconv" library routine.

 -fworking-directory

 Enable generation of linemarkers in the preprocessor output that let the compiler know

 the current working directory at the time of preprocessing. When this option is

 enabled, the preprocessor emits, after the initial linemarker, a second linemarker

 with the current working directory followed by two slashes. GCC uses this directory,

 when it's present in the preprocessed input, as the directory emitted as the current

 working directory in some debugging information formats. This option is implicitly

 enabled if debugging information is enabled, but this can be inhibited with the

 negated form -fno-working-directory. If the -P flag is present in the command line,

 this option has no effect, since no "#line" directives are emitted whatsoever.

 -A predicate=answer

 Make an assertion with the predicate predicate and answer answer. This form is

 preferred to the older form -A predicate(answer), which is still supported, because it

 does not use shell special characters.

 -A -predicate=answer

 Cancel an assertion with the predicate predicate and answer answer.

 -C Do not discard comments. All comments are passed through to the output file, except

 for comments in processed directives, which are deleted along with the directive.

 You should be prepared for side effects when using -C; it causes the preprocessor to Page 8/15

 treat comments as tokens in their own right. For example, comments appearing at the

 start of what would be a directive line have the effect of turning that line into an

 ordinary source line, since the first token on the line is no longer a #.

 -CC Do not discard comments, including during macro expansion. This is like -C, except

 that comments contained within macros are also passed through to the output file where

 the macro is expanded.

 In addition to the side effects of the -C option, the -CC option causes all C++-style

 comments inside a macro to be converted to C-style comments. This is to prevent later

 use of that macro from inadvertently commenting out the remainder of the source line.

 The -CC option is generally used to support lint comments.

 -P Inhibit generation of linemarkers in the output from the preprocessor. This might be

 useful when running the preprocessor on something that is not C code, and will be sent

 to a program which might be confused by the linemarkers.

 -traditional

 -traditional-cpp

 Try to imitate the behavior of pre-standard C preprocessors, as opposed to ISO C

 preprocessors.

 Note that GCC does not otherwise attempt to emulate a pre-standard C compiler, and

 these options are only supported with the -E switch, or when invoking CPP explicitly.

 -trigraphs

 Support ISO C trigraphs. These are three-character sequences, all starting with ??,

 that are defined by ISO C to stand for single characters. For example, ??/ stands for

 \, so '??/n' is a character constant for a newline.

 By default, GCC ignores trigraphs, but in standard-conforming modes it converts them.

 See the -std and -ansi options.

 -remap

 Enable special code to work around file systems which only permit very short file

 names, such as MS-DOS.

 -H Print the name of each header file used, in addition to other normal activities. Each

 name is indented to show how deep in the #include stack it is. Precompiled header

 files are also printed, even if they are found to be invalid; an invalid precompiled

 header file is printed with ...x and a valid one with ...! .

 -dletters Page 9/15

 Says to make debugging dumps during compilation as specified by letters. The flags

 documented here are those relevant to the preprocessor. Other letters are interpreted

 by the compiler proper, or reserved for future versions of GCC, and so are silently

 ignored. If you specify letters whose behavior conflicts, the result is undefined.

 -dM Instead of the normal output, generate a list of #define directives for all the

 macros defined during the execution of the preprocessor, including predefined

 macros. This gives you a way of finding out what is predefined in your version of

 the preprocessor. Assuming you have no file foo.h, the command

 touch foo.h; cpp -dM foo.h

 shows all the predefined macros.

 -dD Like -dM except in two respects: it does not include the predefined macros, and it

 outputs both the #define directives and the result of preprocessing. Both kinds

 of output go to the standard output file.

 -dN Like -dD, but emit only the macro names, not their expansions.

 -dI Output #include directives in addition to the result of preprocessing.

 -dU Like -dD except that only macros that are expanded, or whose definedness is tested

 in preprocessor directives, are output; the output is delayed until the use or

 test of the macro; and #undef directives are also output for macros tested but

 undefined at the time.

 -fdebug-cpp

 This option is only useful for debugging GCC. When used from CPP or with -E, it dumps

 debugging information about location maps. Every token in the output is preceded by

 the dump of the map its location belongs to.

 When used from GCC without -E, this option has no effect.

 -I dir

 -iquote dir

 -isystem dir

 -idirafter dir

 Add the directory dir to the list of directories to be searched for header files

 during preprocessing.

 If dir begins with = or $SYSROOT, then the = or $SYSROOT is replaced by the sysroot

 prefix; see --sysroot and -isysroot.

 Directories specified with -iquote apply only to the quote form of the directive, Page 10/15

 "#include "file"". Directories specified with -I, -isystem, or -idirafter apply to

 lookup for both the "#include "file"" and "#include <file>" directives.

 You can specify any number or combination of these options on the command line to

 search for header files in several directories. The lookup order is as follows:

 1. For the quote form of the include directive, the directory of the current file is

 searched first.

 2. For the quote form of the include directive, the directories specified by -iquote

 options are searched in left-to-right order, as they appear on the command line.

 3. Directories specified with -I options are scanned in left-to-right order.

 4. Directories specified with -isystem options are scanned in left-to-right order.

 5. Standard system directories are scanned.

 6. Directories specified with -idirafter options are scanned in left-to-right order.

 You can use -I to override a system header file, substituting your own version, since

 these directories are searched before the standard system header file directories.

 However, you should not use this option to add directories that contain vendor-

 supplied system header files; use -isystem for that.

 The -isystem and -idirafter options also mark the directory as a system directory, so

 that it gets the same special treatment that is applied to the standard system

 directories.

 If a standard system include directory, or a directory specified with -isystem, is

 also specified with -I, the -I option is ignored. The directory is still searched but

 as a system directory at its normal position in the system include chain. This is to

 ensure that GCC's procedure to fix buggy system headers and the ordering for the

 "#include_next" directive are not inadvertently changed. If you really need to change

 the search order for system directories, use the -nostdinc and/or -isystem options.

 -I- Split the include path. This option has been deprecated. Please use -iquote instead

 for -I directories before the -I- and remove the -I- option.

 Any directories specified with -I options before -I- are searched only for headers

 requested with "#include "file""; they are not searched for "#include <file>". If

 additional directories are specified with -I options after the -I-, those directories

 are searched for all #include directives.

 In addition, -I- inhibits the use of the directory of the current file directory as

 the first search directory for "#include "file"". There is no way to override this Page 11/15

 effect of -I-.

 -iprefix prefix

 Specify prefix as the prefix for subsequent -iwithprefix options. If the prefix

 represents a directory, you should include the final /.

 -iwithprefix dir

 -iwithprefixbefore dir

 Append dir to the prefix specified previously with -iprefix, and add the resulting

 directory to the include search path. -iwithprefixbefore puts it in the same place -I

 would; -iwithprefix puts it where -idirafter would.

 -isysroot dir

 This option is like the --sysroot option, but applies only to header files (except for

 Darwin targets, where it applies to both header files and libraries). See the

 --sysroot option for more information.

 -imultilib dir

 Use dir as a subdirectory of the directory containing target-specific C++ headers.

 -nostdinc

 Do not search the standard system directories for header files. Only the directories

 explicitly specified with -I, -iquote, -isystem, and/or -idirafter options (and the

 directory of the current file, if appropriate) are searched.

 -nostdinc++

 Do not search for header files in the C++-specific standard directories, but do still

 search the other standard directories. (This option is used when building the C++

 library.)

 -Wcomment

 -Wcomments

 Warn whenever a comment-start sequence /* appears in a /* comment, or whenever a

 backslash-newline appears in a // comment. This warning is enabled by -Wall.

 -Wtrigraphs

 Warn if any trigraphs are encountered that might change the meaning of the program.

 Trigraphs within comments are not warned about, except those that would form escaped

 newlines.

 This option is implied by -Wall. If -Wall is not given, this option is still enabled

 unless trigraphs are enabled. To get trigraph conversion without warnings, but get Page 12/15

 the other -Wall warnings, use -trigraphs -Wall -Wno-trigraphs.

 -Wundef

 Warn if an undefined identifier is evaluated in an "#if" directive. Such identifiers

 are replaced with zero.

 -Wexpansion-to-defined

 Warn whenever defined is encountered in the expansion of a macro (including the case

 where the macro is expanded by an #if directive). Such usage is not portable. This

 warning is also enabled by -Wpedantic and -Wextra.

 -Wunused-macros

 Warn about macros defined in the main file that are unused. A macro is used if it is

 expanded or tested for existence at least once. The preprocessor also warns if the

 macro has not been used at the time it is redefined or undefined.

 Built-in macros, macros defined on the command line, and macros defined in include

 files are not warned about.

 Note: If a macro is actually used, but only used in skipped conditional blocks, then

 the preprocessor reports it as unused. To avoid the warning in such a case, you might

 improve the scope of the macro's definition by, for example, moving it into the first

 skipped block. Alternatively, you could provide a dummy use with something like:

 #if defined the_macro_causing_the_warning

 #endif

 -Wno-endif-labels

 Do not warn whenever an "#else" or an "#endif" are followed by text. This sometimes

 happens in older programs with code of the form

 #if FOO

 ...

 #else FOO

 ...

 #endif FOO

 The second and third "FOO" should be in comments. This warning is on by default.

ENVIRONMENT

 This section describes the environment variables that affect how CPP operates. You can

 use them to specify directories or prefixes to use when searching for include files, or to

 control dependency output. Page 13/15

 Note that you can also specify places to search using options such as -I, and control

 dependency output with options like -M. These take precedence over environment variables,

 which in turn take precedence over the configuration of GCC.

 CPATH

 C_INCLUDE_PATH

 CPLUS_INCLUDE_PATH

 OBJC_INCLUDE_PATH

 Each variable's value is a list of directories separated by a special character, much

 like PATH, in which to look for header files. The special character,

 "PATH_SEPARATOR", is target-dependent and determined at GCC build time. For Microsoft

 Windows-based targets it is a semicolon, and for almost all other targets it is a

 colon.

 CPATH specifies a list of directories to be searched as if specified with -I, but

 after any paths given with -I options on the command line. This environment variable

 is used regardless of which language is being preprocessed.

 The remaining environment variables apply only when preprocessing the particular

 language indicated. Each specifies a list of directories to be searched as if

 specified with -isystem, but after any paths given with -isystem options on the

 command line.

 In all these variables, an empty element instructs the compiler to search its current

 working directory. Empty elements can appear at the beginning or end of a path. For

 instance, if the value of CPATH is ":/special/include", that has the same effect as

 -I. -I/special/include.

 DEPENDENCIES_OUTPUT

 If this variable is set, its value specifies how to output dependencies for Make based

 on the non-system header files processed by the compiler. System header files are

 ignored in the dependency output.

 The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make rules

 are written to that file, guessing the target name from the source file name. Or the

 value can have the form file target, in which case the rules are written to file file

 using target as the target name.

 In other words, this environment variable is equivalent to combining the options -MM

 and -MF, with an optional -MT switch too. Page 14/15

 SUNPRO_DEPENDENCIES

 This variable is the same as DEPENDENCIES_OUTPUT (see above), except that system

 header files are not ignored, so it implies -M rather than -MM. However, the

 dependence on the main input file is omitted.

 SOURCE_DATE_EPOCH

 If this variable is set, its value specifies a UNIX timestamp to be used in

 replacement of the current date and time in the "__DATE__" and "__TIME__" macros, so

 that the embedded timestamps become reproducible.

 The value of SOURCE_DATE_EPOCH must be a UNIX timestamp, defined as the number of

 seconds (excluding leap seconds) since 01 Jan 1970 00:00:00 represented in ASCII;

 identical to the output of "date +%s" on GNU/Linux and other systems that support the

 %s extension in the "date" command.

 The value should be a known timestamp such as the last modification time of the source

 or package and it should be set by the build process.

SEE ALSO

 gpl(7), gfdl(7), fsf-funding(7), gcc(1), and the Info entries for cpp and gcc.

COPYRIGHT

 Copyright (c) 1987-2021 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document under the terms of

 the GNU Free Documentation License, Version 1.3 or any later version published by the Free

 Software Foundation. A copy of the license is included in the man page gfdl(7). This

 manual contains no Invariant Sections. The Front-Cover Texts are (a) (see below), and the

 Back-Cover Texts are (b) (see below).

 (a) The FSF's Front-Cover Text is:

 A GNU Manual

 (b) The FSF's Back-Cover Text is:

 You have freedom to copy and modify this GNU Manual, like GNU

 software. Copies published by the Free Software Foundation raise

 funds for GNU development.

gcc-11 2023-05-28 CPP(1)

Page 15/15

